Review: Biochar from Co-Pyrolysis of Biomass and Plastic

Authors

  • Siti Jamilatun Universitas Ahmad Dahlan
  • Zulia Arifah Universitas Ahmad Dahlan
  • Erna Astuti Universitas Ahmad Dahlan
  • Rahayu Aster Universitas Ahmad Dahlan
  • Remmo Sri Ardiansyah Universitas Ahmad Dahlan

DOI:

https://doi.org/10.26555/ijce.v1i1.458

Keywords:

Biochar, Biomass, Co-pyrolysis, Plastic waste, Reactor

Abstract

Plastic and biomass waste disposal will increase if it is not accompanied by appropriate, efficient, and effective waste treatment. Recent research on the yield of charcoal produced by co-pyrolysis has shown that the product of co-pyrolysis of plastic and biomass raw materials is a beneficial additive with a variety of applications, ranging from soil and water improvement, increasing agricultural yields, fuel cells, supercapacitors, as a support/ catalysts, sustainable chemistry, and carbon sequestration. Therefore researchers need to ensure the quality of the results of co-pyrolysis in the form of biochar obtained from any raw material and process to provide maximum benefits, mainly from biomass and plastic raw materials. This study aims to review the formation of biochar from the co-pyrolysis of plastic and biomass raw materials by examining the raw materials, pyrolysis techniques, and the type of reactor used to identify the appropriate parameters. This review discusses biochar production techniques, pyrolysis technology mechanisms, types of pyrolysis, the type of reactor used, the properties of both biomass and plastic raw materials and the properties of biochar produced from various raw materials for comparison. Biochar will be obtained with maximum yield quality from the results of mixing the raw materials for biomass and plastic and optimal operating conditions. It can be an alternative in the bio-oil and syngas energy sector and reduce carbon emissions.

Author Biographies

Zulia Arifah, Universitas Ahmad Dahlan

Department of Chemical Engineering

Erna Astuti, Universitas Ahmad Dahlan

Department of Chemical Engineering

Rahayu Aster, Universitas Ahmad Dahlan

Department of Chemical Engineering

Remmo Sri Ardiansyah, Universitas Ahmad Dahlan

Department of Chemical Engineering

References

M. Shahbaz Et Al., “A Comprehensive Review Of Biomass Based Thermochemical Conversion Technologies Integrated With Co2 Capture And Utilisation Within Beccs Networks,” Resour. Conserv. Recycl., Vol. 173, P. 105734, Oct. 2021, Doi: 10.1016/J.Resconrec.2021.105734.

M. Shahbaz, T. Al-Ansari, A. Inayat, And M. Inayat, “Technical Readiness Level Of Biohydrogen Production Process And Its Value Chain,” In Value-Chain Of Biofuels, Elsevier, 2022, Pp. 335–355. Doi: 10.1016/B978-0-12-824388-6.00017-8.

J. Ahmad, F. Patuzzi, U. Rashid, M. Shahabz, C. Ngamcharussrivichai, And M. Baratieri, “Exploring Untapped Effect Of Process Conditions On Biochar Characteristics And Applications,” Environ. Technol. Innov., Vol. 21, P. 101310, Feb. 2021, Doi: 10.1016/J.Eti.2020.101310.

M. Farooq, M. N. Almustapha, M. Imran, M. A. Saeed, And J. M. Andresen, “In-Situ Regeneration Of Activated Carbon With Electric Potential Swing Desorption (Epsd) For The H2s Removal From Biogas,” Bioresour. Technol., Vol. 249, Pp. 125–131, Feb. 2018, Doi: 10.1016/J.Biortech.2017.09.198.

Z. Mahdi, A. E. Hanandeh, And Q. Yu, “Influence Of Pyrolysis Conditions On Surface Characteristics And Methylene Blue Adsorption Of Biochar Derived From Date Seed Biomass,” Waste Biomass Valorization, Vol. 8, No. 6, Pp. 2061–2073, Sep. 2017, Doi: 10.1007/S12649-016-9714-Y.

J. Lehmann, M. C. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday, And D. Crowley, “Biochar Effects On Soil Biota – A Review,” Soil Biol. Biochem., Vol. 43, No. 9, Pp. 1812–1836, Sep. 2011, Doi: 10.1016/J.Soilbio.2011.04.022.

J. A. Ippolito Et Al., “Feedstock Choice, Pyrolysis Temperature And Type Influence Biochar Characteristics: A Comprehensive Meta-Data Analysis Review,” Biochar, Vol. 2, No. 4, Pp. 421–438, Dec. 2020, Doi: 10.1007/S42773-020-00067-X.

M. Hassan Et Al., “Influences Of Feedstock Sources And Pyrolysis Temperature On The Properties Of Biochar And Functionality As Adsorbents: A Meta-Analysis,” Sci. Total Environ., Vol. 744, P. 140714, Nov. 2020, Doi: 10.1016/J.Scitotenv.2020.140714.

S. Jamilatun, J. Pitoyo, Z. Arifah, S. Amelia, And A. Maarif, “Pirolisis Ampas Tebu(Saccharum Officinarum Linn): Pengaruh Suhu Terhadap Yield Dan Karakteristik Produk,” Univ. Muhammadiyah Jkt., 2022.

D. Lefebvre Et Al., “Modelling The Potential For Soil Carbon Sequestration Using Biochar From Sugarcane Residues In Brazil,” Sci. Rep., Vol. 10, No. 1, P. 19479, Nov. 2020, Doi: 10.1038/S41598-020-76470-Y.

D. M. Alotaibi, M. Akrami, M. Dibaj, And A. A. Javadi, “Smart Energy Solution For An Optimised Sustainable Hospital In The Green City Of Neom,” Sustain. Energy Technol. Assess., Vol. 35, Pp. 32–40, Oct. 2019, Doi: 10.1016/J.Seta.2019.05.017.

S. Mariyam, M. Shahbaz, T. Al-Ansari, Hamish. R. Mackey, And G. Mckay, “A Critical Review On Co-Gasification And Co-Pyrolysis For Gas Production,” Renew. Sustain. Energy Rev., Vol. 161, P. 112349, Jun. 2022, Doi: 10.1016/J.Rser.2022.112349.

A. Suresh Et Al., “Microwave Pyrolysis Of Coal, Biomass And Plastic Waste: A Review,” Environ. Chem. Lett., Vol. 19, No. 5, Pp. 3609–3629, Oct. 2021, Doi: 10.1007/S10311-021-01245-4.

J. R. Seay, “The Global Plastic Waste Challenge And How We Can Address It,” Clean Technol. Environ. Policy, Vol. 24, No. 3, Pp. 729–730, Apr. 2022, Doi: 10.1007/S10098-021-02271-0.

M. Ito Et Al., “Development Of Suitable Product Recovery Systems Of Continuous Hybrid Jig For Plastic-Plastic Separation,” Miner. Eng., Vol. 141, P. 105839, Sep. 2019, Doi: 10.1016/J.Mineng.2019.105839.

Z. Wang, K. G. Burra, T. Lei, And A. K. Gupta, “Co-Pyrolysis Of Waste Plastic And Solid Biomass For Synergistic Production Of Biofuels And Chemicals-A Review,” Prog. Energy Combust. Sci., Vol. 84, P. 100899, May 2021, Doi: 10.1016/J.Pecs.2020.100899.

R. Geyer, J. R. Jambeck, And K. L. Law, “Production, Use, And Fate Of All Plastics Ever Made,” Sci. Adv., Vol. 3, No. 7, P. E1700782, Jul. 2017, Doi: 10.1126/Sciadv.1700782.

W. Nabgan Et Al., “Bibliometric Analysis And An Overview Of The Application Of The Non-Precious Materials For Pyrolysis Reaction Of Plastic Waste,” Arab. J. Chem., Vol. 16, No. 6, P. 104717, Jun. 2023, Doi: 10.1016/J.Arabjc.2023.104717.

S. Elkhalifa, T. Al-Ansari, H. R. Mackey, And G. Mckay, “Food Waste To Biochars Through Pyrolysis: A Review,” Resour. Conserv. Recycl., Vol. 144, Pp. 310–320, May 2019, Doi: 10.1016/J.Resconrec.2019.01.024.

N. L. Panwar, A. Pawar, And B. L. Salvi, “Comprehensive Review On Production And Utilization Of Biochar,” Sn Appl. Sci., Vol. 1, No. 2, P. 168, Feb. 2019, Doi: 10.1007/S42452-019-0172-6.

A. Tomczyk, Z. Sokołowska, And P. Boguta, “Biochar Physicochemical Properties: Pyrolysis Temperature And Feedstock Kind Effects,” Rev. Environ. Sci. Biotechnol., Vol. 19, No. 1, Pp. 191–215, Mar. 2020, Doi: 10.1007/S11157-020-09523-3.

N. Jafri, W. Y. Wong, V. Doshi, L. W. Yoon, And K. H. Cheah, “A Review On Production And Characterization Of Biochars For Application In Direct Carbon Fuel Cells,” Process Saf. Environ. Prot., Vol. 118, Pp. 152–166, Aug. 2018, Doi: 10.1016/J.Psep.2018.06.036.

G. Omulo, N. Banadda, I. Kabenge, And J. Seay, “Optimizing Slow Pyrolysis Of Banana Peels Wastes Using Response Surface Methodology,” Environ. Eng. Res., Vol. 24, No. 2, Pp. 354–361, Oct. 2018, Doi: 10.4491/Eer.2018.269.

S. Jamilatun, J. Pitoyo, S. Amelia, A. Ma’arif, D. C. Hakika, And I. Mufandi, “Experimental Study On The Characterization Of Pyrolysis Products From Bagasse (Saccharum Officinarum L.): Bio-Oil, Biochar, And Gas Products,” Indones. J. Sci. Technol., Vol. 7, No. 3, Pp. 565–582, Oct. 2022, Doi: 10.17509/Ijost.V7i3.51566.

D. Rathnayake Et Al., “Investigation Of Biomass And Agricultural Plastic Co-Pyrolysis: Effect On Biochar Yield And Properties,” J. Anal. Appl. Pyrolysis, Vol. 155, P. 105029, May 2021, Doi: 10.1016/J.Jaap.2021.105029.

J. A. Rodriguez, J. F. Lustosa Filho, L. C. A. Melo, I. R. De Assis, And T. S. De Oliveira, “Co-Pyrolysis Of Agricultural And Industrial Wastes Changes The Composition And Stability Of Biochars And Can Improve Their Agricultural And Environmental Benefits,” J. Anal. Appl. Pyrolysis, Vol. 155, P. 105036, May 2021, Doi: 10.1016/J.Jaap.2021.105036.

A. Al-Rumaihi, M. Shahbaz, G. Mckay, H. Mackey, And T. Al-Ansari, “A Review Of Pyrolysis Technologies And Feedstock: A Blending Approach For Plastic And Biomass Towards Optimum Biochar Yield,” Renew. Sustain. Energy Rev., Vol. 167, P. 112715, Oct. 2022, Doi: 10.1016/J.Rser.2022.112715.

K. Yadav And S. Jagadevan, “Influence Of Process Parameters On Synthesis Of Biochar By Pyrolysis Of Biomass: An Alternative Source Of Energy,” In Recent Advances In Pyrolysis, H. Al- Haj Ibrahim, Ed., Intechopen, 2020. Doi: 10.5772/Intechopen.88204.

C. Z. Zaman Et Al., “Pyrolysis: A Sustainable Way To Generate Energy From Waste,” In Pyrolysis, M. Samer, Ed., Intech, 2017. Doi: 10.5772/Intechopen.69036.

F. Abnisa, W. M. A. Wan Daud, And J. N. Sahu, “Optimization And Characterization Studies On Bio-Oil Production From Palm Shell By Pyrolysis Using Response Surface Methodology,” Biomass Bioenergy, Vol. 35, No. 8, Pp. 3604–3616, Aug. 2011, Doi: 10.1016/J.Biombioe.2011.05.011.

W.-H. Chen Et Al., “Current Status Of Biohydrogen Production From Lignocellulosic Biomass, Technical Challenges And Commercial Potential Through Pyrolysis Process,” Energy, Vol. 226, P. 120433, Jul. 2021, Doi: 10.1016/J.Energy.2021.120433.

M. N. Uddin Et Al., “An Overview Of Recent Developments In Biomass Pyrolysis Technologies,” Energies, Vol. 11, No. 11, P. 3115, Nov. 2018, Doi: 10.3390/En11113115.

M. Van De Velden, J. Baeyens, A. Brems, B. Janssens, And R. Dewil, “Fundamentals, Kinetics And Endothermicity Of The Biomass Pyrolysis Reaction,” Renew. Energy, Vol. 35, No. 1, Pp. 232–242, Jan. 2010, Doi: 10.1016/J.Renene.2009.04.019.

D. Neves, H. Thunman, A. Matos, L. Tarelho, And A. Gómez-Barea, “Characterization And Prediction Of Biomass Pyrolysis Products,” Prog. Energy Combust. Sci., Vol. 37, No. 5, Pp. 611–630, Sep. 2011, Doi: 10.1016/J.Pecs.2011.01.001.

W. Cai, Z. Luo, J. Zhou, And Q. Wang, “A Review On The Selection Of Raw Materials And Reactors For Biomass Fast Pyrolysis In China,” Fuel Process. Technol., Vol. 221, P. 106919, Oct. 2021, Doi: 10.1016/J.Fuproc.2021.106919.

W. M. Lewandowski, K. Januszewicz, And W. Kosakowski, “Efficiency And Proportions Of Waste Tyre Pyrolysis Products Depending On The Reactor Type—A Review,” J. Anal. Appl. Pyrolysis, Vol. 140, Pp. 25–53, Jun. 2019, Doi: 10.1016/J.Jaap.2019.03.018.

A. Inayat Et Al., “A Comprehensive Review On Advanced Thermochemical Processes For Bio-Hydrogen Production Via Microwave And Plasma Technologies,” Biomass Convers. Biorefinery, Nov. 2020, Doi: 10.1007/S13399-020-01175-1.

X. Hu And M. Gholizadeh, “Biomass Pyrolysis: A Review Of The Process Development And Challenges From Initial Researches Up To The Commercialisation Stage,” J. Energy Chem., Vol. 39, Pp. 109–143, Dec. 2019, Doi: 10.1016/J.Jechem.2019.01.024.

O. Mašek, P. Brownsort, A. Cross, And S. Sohi, “Influence Of Production Conditions On The Yield And Environmental Stability Of Biochar,” Fuel, Vol. 103, Pp. 151–155, Jan. 2013, Doi: 10.1016/J.Fuel.2011.08.044.

I. Barbarias Et Al., “Catalyst Performance In The Hdpe Pyrolysis-Reforming Under Reaction-Regeneration Cycles,” Catalysts, Vol. 9, No. 5, P. 414, May 2019, Doi: 10.3390/Catal9050414.

M. Jahirul, M. Rasul, A. Chowdhury, And N. Ashwath, “Biofuels Production Through Biomass Pyrolysis —A Technological Review,” Energies, Vol. 5, No. 12, Pp. 4952–5001, Nov. 2012, Doi: 10.3390/En5124952.

L. Tang And H. Huang, “Plasma Pyrolysis Of Biomass For Production Of Syngas And Carbon Adsorbent,” Energy Fuels, Vol. 19, No. 3, Pp. 1174–1178, May 2005, Doi: 10.1021/Ef049835b.

B. D. Shakya, “Pyrolysis Of Waste Plastic To Generate Useful Fuel Containing Hydrogen Using A Solar Thermochemical Process,” Chemistry, Mar. 2017.

M. Shahbaz Et Al., “Investigation Of Biomass Components On The Slow Pyrolysis Products Yield Using Aspen Plus For Techno-Economic Analysis,” Biomass Convers. Biorefinery, Vol. 12, No. 3, Pp. 669–681, Mar. 2022, Doi: 10.1007/S13399-020-01040-1.

N. A. V. Santos Et Al., “Biomass Wastes From Biofuel Chains In Brazil: Bio-Oil Production And Byproducts,” Rev. Virtual Quím., Vol. 9, No. 1, Pp. 52–72, 2017, Doi: 10.21577/1984-6835.20170007.

G. D. Strahan, C. A. Mullen, And A. A. Boateng, “Characterizing Biomass Fast Pyrolysis Oils By 13 C Nmr And Chemometric Analysis,” Energy Fuels, Vol. 25, No. 11, Pp. 5452–5461, Nov. 2011, Doi: 10.1021/Ef2013166.

A. V. Bridgwater, “Review Of Fast Pyrolysis Of Biomass And Product Upgrading,” Biomass Bioenergy, Vol. 38, Pp. 68–94, Mar. 2012, Doi: 10.1016/J.Biombioe.2011.01.048.

H. B. Goyal, D. Seal, And R. C. Saxena, “Bio-Fuels From Thermochemical Conversion Of Renewable Resources: A Review,” Renew. Sustain. Energy Rev., Vol. 12, No. 2, Pp. 504–517, Feb. 2008, Doi: 10.1016/J.Rser.2006.07.014.

A. N. Amenaghawon, C. L. Anyalewechi, C. O. Okieimen, And H. S. Kusuma, “Biomass Pyrolysis Technologies For Value-Added Products: A State-Of-The-Art Review,” Environ. Dev. Sustain., Vol. 23, No. 10, Pp. 14324–14378, Oct. 2021, Doi: 10.1007/S10668-021-01276-5.

F. A. S. Mota, R. A. Viegas, A. A. S. Lima, F. F. P. Santos, And F. T. R. Caselli, “Pirólise Da Biomassa Lignocelulósica: Uma Revisão,” Rev. Gest. Inov. E Tecnol., Vol. 5, No. 4, Pp. 2511–2525, Dec. 2015, Doi: 10.7198/S2237-0722201500040003.

Ö. Çepelioğullar And A. Pütün, “Utilization Of Two Different Types Of Plastic Wastes From Daily And Industrial Life,” J. Selcuk Univ. Nat. Appl. Sci., Oct. 2013.

L. S. Diaz-Silvarrey, A. Mcmahon, And A. N. Phan, “Benzoic Acid Recovery Via Waste Poly(Ethylene Terephthalate) (Pet) Catalytic Pyrolysis Using Sulphated Zirconia Catalyst,” J. Anal. Appl. Pyrolysis, Vol. 134, Pp. 621–631, Sep. 2018, Doi: 10.1016/J.Jaap.2018.08.014.

X. Lin, L. Kong, H. Cai, Q. Zhang, D. Bi, And W. Yi, “Effects Of Alkali And Alkaline Earth Metals On The Co-Pyrolysis Of Cellulose And High Density Polyethylene Using Tga And Py-Gc/Ms,” Fuel Process. Technol., Vol. 191, Pp. 71–78, Aug. 2019, Doi: 10.1016/J.Fuproc.2019.03.015.

G. Zattini Et Al., “Pyrolysis Of Low-Density Polyethylene,” In Sustainable Design And Manufacturing 2017, G. Campana, R. J. Howlett, R. Setchi, And B. Cimatti, Eds., In Smart Innovation, Systems And Technologies, Vol. 68. Cham: Springer International Publishing, 2017, Pp. 480–490. Doi: 10.1007/978-3-319-57078-5_46.

S. M. Fakhrhoseini And M. Dastanian, “Predicting Pyrolysis Products Of Pe, Pp, And Pet Using Nrtl Activity Coefficient Model,” J. Chem., Vol. 2013, Pp. 1–5, 2013, Doi: 10.1155/2013/487676.

I. Ahmad Et Al., “Pyrolysis Study Of Polypropylene And Polyethylene Into Premium Oil Products,” Int. J. Green Energy, Vol. 12, No. 7, Pp. 663–671, Jul. 2015, Doi: 10.1080/15435075.2014.880146.

Q. Zhang, M. U. Khan, X. Lin, H. Cai, And H. Lei, “Temperature Varied Biochar As A Reinforcing Filler For High-Density Polyethylene Composites,” Compos. Part B Eng., Vol. 175, P. 107151, Oct. 2019, Doi: 10.1016/J.Compositesb.2019.107151.

A. Y. Elnour Et Al., “Effect Of Pyrolysis Temperature On Biochar Microstructural Evolution, Physicochemical Characteristics, And Its Influence On Biochar/Polypropylene Composites,” Appl. Sci., Vol. 9, No. 6, P. 1149, Mar. 2019, Doi: 10.3390/App9061149.

M. Dai Et Al., “Microwave-Assisted Fast Co-Pyrolysis Behaviors And Products Between Microalgae And Polyvinyl Chloride,” Appl. Therm. Eng., Vol. 136, Pp. 9–15, May 2018, Doi: 10.1016/J.Applthermaleng.2018.02.102.

V. B. Platonov, M. N. Rumyantseva, T. B. Shatalova, A. E. Baranchikov, And A. M. Gas’kov, “Nanofibers Of Semiconductor Oxides As Sensitive Materials For Detection Of Gaseous Products Formed In Low-Temperature Pyrolysis Of Polyvinyl Chloride,” Russ. J. Appl. Chem., Vol. 91, No. 3, Pp. 447–453, Mar. 2018, Doi: 10.1134/S1070427218030175.

J. Chattopadhyay, T. S. Pathak, R. Srivastava, And A. C. Singh, “Catalytic Co-Pyrolysis Of Paper Biomass And Plastic Mixtures (Hdpe (High Density Polyethylene), Pp (Polypropylene) And Pet (Polyethylene Terephthalate)) And Product Analysis,” Energy, Vol. 103, Pp. 513–521, May 2016, Doi: 10.1016/J.Energy.2016.03.015.

A. Demirbaş, “Recovery Of Chemicals And Gasoline-Range Fuels From Plastic Wastes Via Pyrolysis,” Energy Sources, Vol. 27, No. 14, Pp. 1313–1319, Oct. 2005, Doi: 10.1080/009083190519500.

R. Miandad, M. A. Barakat, M. Rehan, A. S. Aburiazaiza, I. M. I. Ismail, And A. S. Nizami, “Plastic Waste To Liquid Oil Through Catalytic Pyrolysis Using Natural And Synthetic Zeolite Catalysts,” Waste Manag., Vol. 69, Pp. 66–78, Nov. 2017, Doi: 10.1016/J.Wasman.2017.08.032.

B. Ravindran Et Al., “Influence Of Biochar On Physico-Chemical And Microbial Community During Swine Manure Composting Process,” J. Environ. Manage., Vol. 232, Pp. 592–599, Feb. 2019, Doi: 10.1016/J.Jenvman.2018.11.119.

S. R. Naqvi Et Al., “Recent Developments On Sewage Sludge Pyrolysis And Its Kinetics: Resources Recovery, Thermogravimetric Platforms, And Innovative Prospects,” Comput. Chem. Eng., Vol. 150, P. 107325, Jul. 2021, Doi: 10.1016/J.Compchemeng.2021.107325.

M. Keiluweit, P. S. Nico, M. G. Johnson, And M. Kleber, “Dynamic Molecular Structure Of Plant Biomass-Derived Black Carbon (Biochar),” Environ. Sci. Technol., Vol. 44, No. 4, Pp. 1247–1253, Feb. 2010, Doi: 10.1021/Es9031419.

J. Sparkes And P. Stoutjesdijk, Biochar: Implications For Agricultural Productivity. Abares, 2011.

Y.-M. Chang, W.-T. Tsai, And M.-H. Li, “Chemical Characterization Of Char Derived From Slow Pyrolysis Of Microalgal Residue,” J. Anal. Appl. Pyrolysis, Vol. 111, Pp. 88–93, Jan. 2015, Doi: 10.1016/J.Jaap.2014.12.004.

W. Tong, Z. Cai, Q. Liu, S. Ren, And M. Kong, “Effect Of Pyrolysis Temperature On Bamboo Char Combustion: Reactivity, Kinetics And Thermodynamics,” Energy, Vol. 211, P. 118736, Nov. 2020, Doi: 10.1016/J.Energy.2020.118736.

Y. Zhou, Z. Chen, H. Gong, X. Wang, And H. Yu, “A Strategy Of Using Recycled Char As A Co-Catalyst In Cyclic In-Situ Catalytic Cattle Manure Pyrolysis For Increasing Gas Production,” Waste Manag., Vol. 107, Pp. 74–81, Apr. 2020, Doi: 10.1016/J.Wasman.2020.04.002.

X. Zhao, W. Wang, H. Liu, C. Ma, And Z. Song, “Microwave Pyrolysis Of Wheat Straw: Product Distribution And Generation Mechanism,” Bioresour. Technol., Vol. 158, Pp. 278–285, Apr. 2014, Doi: 10.1016/J.Biortech.2014.01.094.

F. N. D. Mukome, X. Zhang, L. C. R. Silva, J. Six, And S. J. Parikh, “Use Of Chemical And Physical Characteristics To Investigate Trends In Biochar Feedstocks,” J. Agric. Food Chem., Vol. 61, No. 9, Pp. 2196–2204, Mar. 2013, Doi: 10.1021/Jf3049142.

P. Mohanty, S. Nanda, K. K. Pant, S. Naik, J. A. Kozinski, And A. K. Dalai, “Evaluation Of The Physiochemical Development Of Biochars Obtained From Pyrolysis Of Wheat Straw, Timothy Grass And Pinewood: Effects Of Heating Rate,” J. Anal. Appl. Pyrolysis, Vol. 104, Pp. 485–493, Nov. 2013, Doi: 10.1016/J.Jaap.2013.05.022.

W.-H. Kuan, Y.-F. Huang, C.-C. Chang, And S.-L. Lo, “Catalytic Pyrolysis Of Sugarcane Bagasse By Using Microwave Heating,” Bioresour. Technol., Vol. 146, Pp. 324–329, Oct. 2013, Doi: 10.1016/J.Biortech.2013.07.079.

K. Kameyama, T. Miyamoto, Y. Iwata, And T. Shiono, “Influences Of Feedstock And Pyrolysis Temperature On The Nitrate Adsorption Of Biochar,” Soil Sci. Plant Nutr., Vol. 62, No. 2, Pp. 180–184, Mar. 2016, Doi: 10.1080/00380768.2015.1136553.

H. Iftikhar, M. Zeeshan, S. Iqbal, B. Muneer, And M. Razzaq, “Co-Pyrolysis Of Sugarcane Bagasse And Polystyrene With Ex-Situ Catalytic Bed Of Metal Oxides/Hzsm-5 With Focus On Liquid Yield,” Bioresour. Technol., Vol. 289, P. 121647, Oct. 2019, Doi: 10.1016/J.Biortech.2019.121647.

J. X. Liew Et Al., “Synergistic Effects Of Catalytic Co-Pyrolysis Of Corn Cob And Hdpe Waste Mixtures Using Weight Average Global Process Model,” Renew. Energy, Vol. 170, Pp. 948–963, Jun. 2021, Doi: 10.1016/J.Renene.2021.02.053.

M. Guillain, K. Fairouz, S. R. Mar, F. Monique, And L. Jacques, “Attrition-Free Pyrolysis To Produce Bio-Oil And Char,” Bioresour. Technol., Vol. 100, No. 23, Pp. 6069–6075, Dec. 2009, Doi: 10.1016/J.Biortech.2009.06.085.

K. Kositkanawuth, M. L. Sattler, And B. Dennis, “Pyrolysis Of Macroalgae And Polysytrene: A Review,” Curr. Sustain. Energy Rep., Vol. 1, No. 4, Pp. 121–128, Dec. 2014, Doi: 10.1007/S40518-014-0020-7.

B. B. Uzoejinwa, X. He, S. Wang, A. El-Fatah Abomohra, Y. Hu, And Q. Wang, “Co-Pyrolysis Of Biomass And Waste Plastics As A Thermochemical Conversion Technology For High-Grade Biofuel Production: Recent Progress And Future Directions Elsewhere Worldwide,” Energy Convers. Manag., Vol. 163, Pp. 468–492, May 2018, Doi: 10.1016/J.Enconman.2018.02.004.

S. A, M. J, P. F. Wu, S. H. Mun, And C. Lalonde, “Commercial Application Of Pyrolysis Technology In Agriculture,” In 2014 Asabe Annual International Meeting, American Society Of Agricultural And Biological Engineers, Jul. 2014, Pp. 1–18. Doi: 10.13031/Aim.20141909089.

F. Abnisa, A. Arami-Niya, W. M. A. Wan Daud, J. N. Sahu, And I. M. Noor, “Utilization Of Oil Palm Tree Residues To Produce Bio-Oil And Bio-Char Via Pyrolysis,” Energy Convers. Manag., Vol. 76, Pp. 1073–1082, Dec. 2013, Doi: 10.1016/J.Enconman.2013.08.038.

F. Paradela, F. Pinto, I. Gulyurtlu, I. Cabrita, And N. Lapa, “Study Of The Co-Pyrolysis Of Biomass And Plastic Wastes,” Clean Technol. Environ. Policy, Vol. 11, No. 1, Pp. 115–122, Feb. 2009, Doi: 10.1007/S10098-008-0176-1.

K. P. Shadangi And K. Mohanty, “Co-Pyrolysis Of Karanja And Niger Seeds With Waste Polystyrene To Produce Liquid Fuel,” Fuel, Vol. 153, Pp. 492–498, Aug. 2015, Doi: 10.1016/J.Fuel.2015.03.017.

D. Hua, Y. Wu, Y. Chen, J. Li, M. Yang, And X. Lu, “Co-Pyrolysis Behaviors Of The Cotton Straw/Pp Mixtures And Catalysis Hydrodeoxygenation Of Co-Pyrolysis Products Over Ni-Mo/Al2o3 Catalyst,” Catalysts, Vol. 5, No. 4, Pp. 2085–2097, Dec. 2015, Doi: 10.3390/Catal5042085.

M. Brebu, S. Ucar, C. Vasile, And J. Yanik, “Co-Pyrolysis Of Pine Cone With Synthetic Polymers,” Fuel, Vol. 89, No. 8, Pp. 1911–1918, Aug. 2010, Doi: 10.1016/J.Fuel.2010.01.029.

M.-J. Jeon Et Al., “Copyrolysis Of Block Polypropylene With Waste Wood Chip,” Korean J. Chem. Eng., Vol. 28, No. 2, Pp. 497–501, Feb. 2011, Doi: 10.1007/S11814-010-0497-8.

J. Yang Et Al., “Fast Co-Pyrolysis Of Low Density Polyethylene And Biomass Residue For Oil Production,” Energy Convers. Manag., Vol. 120, Pp. 422–429, Jul. 2016, Doi: 10.1016/J.Enconman.2016.05.008.

P. Rutkowski And A. Kubacki, “Influence Of Polystyrene Addition To Cellulose On Chemical Structure And Properties Of Bio-Oil Obtained During Pyrolysis,” Energy Convers. Manag., Vol. 47, No. 6, Pp. 716–731, Apr. 2006, Doi: 10.1016/J.Enconman.2005.05.017.

E. Önal, B. B. Uzun, And A. E. Pütün, “An Experimental Study On Bio-Oil Production From Co-Pyrolysis With Potato Skin And High-Density Polyethylene (Hdpe),” Fuel Process. Technol., Vol. 104, Pp. 365–370, Dec. 2012, Doi: 10.1016/J.Fuproc.2012.06.010.

Downloads

Published

2023-07-31