Systematic literature review: analysis of implementation trends of STEM-based physics learning on dynamic fluid material

Authors

DOI:

https://doi.org/10.12928/jrkpf.v11i2.809

Keywords:

fluid dynamics, physics learning, STEM

Abstract

This study aims to examine the implementation of STEM-based physics learning on dynamic fluid material. This research falls under the Systematic Literature Review (SLR) category using the PRISMA method. The databases used include Google Scholar, Journal of Physics: Conference Series, and AIP Conference Proceedings. From these three databases, six relevant articles were obtained. Based on the research review conducted, the findings indicate that STEM-based physics learning can enhance students' mastery of concepts and creative thinking skills in dynamic fluid materials. This study implies that implementing STEM-based physics learning on dynamic fluid materials can enhance students' conceptual understanding and creative thinking skills, potentially fostering innovation in physics education in the future.

References

[1] R. A. Serway and J. W. Jewett, Physics for Scientists and Engineers with Modern Physics, 10th ed. Boston: Cengage, 2017.

[2] S. KHUT and K. Shimizu, "Integrating STEM Approach in K-12 Science Education Teaching Practice: A Systematic Literature Review," Int. J. Res. STEM Educ., vol. 5, no. 2, pp. 1-18, Nov. 2023, doi: 10.33830/ijrse.v5i2.1598. https://doi.org/10.33830/ijrse.v5i2.1598

[3] S. Sungur and C. Tekkaya, "Effects of Problem-Based Learning and Traditional Instruction on Self-Regulated Learning," J. Educ. Res., vol. 99, no. 5, pp. 307-320, May 2006, doi: 10.3200/JOER.99.5.307-320. https://doi.org/10.3200/JOER.99.5.307-320

[4] A. Dominguez, J. De la Garza, M. Quezada-Espinoza, and G. Zavala, "Integration of Physics and Mathematics in STEM Education: Use of Modeling," Educ. Sci., vol. 14, no. 1, p. 20, Dec. 2023, doi: 10.3390/educsci14010020. https://doi.org/10.3390/educsci14010020

[5] Z. Arifin, S. Sukarmin, and S. Sarwanto, "Students' Perceptions in Developing Fluid Dynamic Concept Inventory (FDCI) Assessment Based on STEM Literacy to Measure Problem-Solving Skills: A Need Analysis," 2022. doi: 10.2991/assehr.k.220103.008. https://doi.org/10.2991/assehr.k.220103.008

[6] G. A. Permana, Parno, A. Hidayat, and M. Ali, "Improving creative thinking skill of fluid dynamic through IBL-STEM with formative assessment," 2021, p. 050016. doi: 10.1063/5.0043128. https://doi.org/10.1063/5.0043128

[7] A. Suarez, S. Kahan, G. Zavala, and A. C. Marti, "Students' conceptual difficulties in hydrodynamics," Phys. Rev. Phys. Educ. Res., vol. 13, no. 2, p. 020132, Nov. 2017, doi: 10.1103/PhysRevPhysEducRes.13.020132. https://doi.org/10.1103/PhysRevPhysEducRes.13.020132

[8] P. L. Y. Kristian, C. Cari, and W. Sunarno, "The analysis of the mathematics concept comprehension of senior high school student on dynamic fluid material," J. Phys. Conf. Ser., vol. 1006, p. 012028, Apr. 2018, doi: 10.1088/1742-6596/1006/1/012028. https://doi.org/10.1088/1742-6596/1006/1/012028

[9] S. Sutaphan and C. Yuenyong, "STEM Education Teaching approach: Inquiry from the Context Based," J. Phys. Conf. Ser., vol. 1340, no. 1, p. 012003, Oct. 2019, doi: 10.1088/1742-6596/1340/1/012003. https://doi.org/10.1088/1742-6596/1340/1/012003

[10] H. Makrufi, A. Hidayat, M. Muhardjito, and E. Sriwati, "Analisis Kemampuan Pemecahan Masalah Siswa Pada Materi Fluida Dinamis," in Peran Pendidikan, Sains, dan Teknologi dalam Membangun Intelektual Bangsa dan Menjaga Budaya Nasional di Era MEA, 2016, pp. 332-340.

[11] I. S. Dewi and M. N. R. Jauhariyah, "Analisis Bibliometrik Implementasi Pembelajaran Fisika Berbasis STEM pada Tahun 2011-2021," J. Ilm. Pendidik. Fis., vol. 5, no. 3, p. 368, Oct. 2021, doi: 10.20527/jipf.v5i3.3904. https://doi.org/10.20527/jipf.v5i3.3904

[12] N. Putra, A. Asrizal, and U. Usmeldi, "Meta-Analisis Pengaruh Stem Pada Pembelajaran Fisika Terhadap Pemahaman Konsep Dan Keterampilan Berpikir Kreatif Siswa," J. Pendidik. IPA, vol. 12, no. 3, pp. 228-239, 2023, doi: 10.20961/inkuiri.v12i3.79314.

[13] N. Wahdah, K. A. Nugroho, and J. Jumadi, "Enhance Critical Thinking Skills in Application of PjBL-STEM on Fluids Dynamics: A Literature Study," J. Penelit. Pendidik. IPA, vol. 9, no. 6, pp. 89-94, Jun. 2023, doi: 10.29303/jppipa.v9i6.2743. https://doi.org/10.29303/jppipa.v9i6.2743

[14] M. Misbah, I. Hamidah, S. Sriyati, and A. Samsudin, "Research Trend of Dynamic Fluid in Learning: A Bibliometric Analysis," J. Penelit. Pengemb. Pendidik. Fis., vol. 9, no. 2, pp. 263-272, Dec. 2023, doi: 10.21009/1.09209. https://doi.org/10.21009/1.09209

[15] M. J. Page and D. Moher, "Evaluations of the uptake and impact of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement and extensions: a scoping review," Syst. Rev., vol. 6, no. 1, p. 263, Dec. 2017, doi: 10.1186/s13643-017-0663-8. https://doi.org/10.1186/s13643-017-0663-8

[16] M. J. Page et al., "Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement," J. Clin. Epidemiol., vol. 134, pp. 103-112, Jun. 2021, doi: 10.1016/j.jclinepi.2021.02.003. https://doi.org/10.1016/j.jclinepi.2021.02.003

[17] H. Crompton and D. Burke, "The use of mobile learning in higher education: A systematic review," Comput. Educ., vol. 123, pp. 53-64, Aug. 2018, doi: 10.1016/j.compedu.2018.04.007. https://doi.org/10.1016/j.compedu.2018.04.007

[18] A. T. Estapa and K. M. Tank, "Supporting integrated STEM in the elementary classroom: a professional development approach centered on an engineering design challenge," Int. J. STEM Educ., vol. 4, no. 1, p. 6, Dec. 2017, doi: 10.1186/s40594-017-0058-3. https://doi.org/10.1186/s40594-017-0058-3

[19] S.-C. Fan and K.-C. Yu, "How an integrative STEM curriculum can benefit students in engineering design practices," Int. J. Technol. Des. Educ., vol. 27, no. 1, pp. 107-129, Mar. 2017, doi: 10.1007/s10798-015-9328-x. https://doi.org/10.1007/s10798-015-9328-x

[20] M. E. Peffer and N. Ramezani, "Assessing epistemological beliefs of experts and novices via practices in authentic science inquiry," Int. J. STEM Educ., vol. 6, no. 1, p. 3, Dec. 2019, doi: 10.1186/s40594-018-0157-9. https://doi.org/10.1186/s40594-018-0157-9

[21] S. Yerdelen-Damar and A. Eryılmaz, "Promoting Conceptual Understanding with Explicit Epistemic Intervention in Metacognitive Instruction: Interaction Between the Treatment and Epistemic Cognition," Res. Sci. Educ., vol. 51, no. 2, pp. 547-575, 2021, doi: 10.1007/s11165-018-9807-7. https://doi.org/10.1007/s11165-018-9807-7

[22] E. H. Mohd Shahali, L. Halim, M. S. Rasul, K. Osman, and M. A. Zulkifeli, "STEM Learning through Engineering Design: Impact on Middle Secondary Students' Interest towards STEM," EURASIA J. Math. Sci. Technol. Educ., vol. 13, no. 5, Dec. 2016, doi: 10.12973/eurasia.2017.00667a. https://doi.org/10.12973/eurasia.2017.00667a

[23] L. Yuliati, Parno, F. Yogismawati, and I. K. Nisa, "Building Scientific Literacy and Concept Achievement of Physics through Inquiry-Based Learning for STEM Education," J. Phys. Conf. Ser., vol. 1097, p. 012022, Sep. 2018, doi: 10.1088/1742-6596/1097/1/012022. https://doi.org/10.1088/1742-6596/1097/1/012022

[24] P. Mupira and U. Ramnarain, "The effect of inquiry‐based learning on the achievement goal‐orientation of grade 10 physical sciences learners at township schools in South Africa," J. Res. Sci. Teach., vol. 55, no. 6, pp. 810-825, Aug. 2018, doi: 10.1002/tea.21440. https://doi.org/10.1002/tea.21440

[25] F. Ssempala and J. O. Masingila, "Effect of Professional Development On Chemistry Teachers' Understanding And Practice of Inquiry-Based Instruction in Kampala, Uganda," Int. J. Sci. Res. anda Educ., vol. 7, no. 2, pp. 8085-8105, Aug. 2019.

[26] M. Ghadiri Khanaposhtani, C. J. Liu, B. L. Gottesman, D. Shepardson, and B. Pijanowski, "Evidence that an informal environmental summer camp can contribute to the construction of the conceptual understanding and situational interest of STEM in middle-school youth," Int. J. Sci. Educ. Part B, vol. 8, no. 3, pp. 227-249, Jul. 2018, doi: 10.1080/21548455.2018.1451665. https://doi.org/10.1080/21548455.2018.1451665

[27] H. P. Rivai, L. Yuliati, and Parno, "Penguasaan Konsep dengan Pembelajaran STEM Berbasis Masalah Materi Fluida Dinamis pada Siswa SMA," J. Pendidik. Teor. Penelitian, dan Pengemb., vol. 3, no. 8, pp. 1080-1088, 2018, [Online]. Available: http://journal.um.ac.id/index.php/jptpp/

[28] C. B. Nurbaya, L. Yuliati, and S. Sutopo, "Penguasaan Konsep Fluida Dinamis Siswa melalui Pembelajaran Berbasis Inkuiri dalam STEM," J. Pendidik. Teor. Penelitian, dan Pengemb., vol. 4, no. 4, p. 510, Apr. 2019, doi: 10.17977/jptpp.v4i4.12344. https://doi.org/10.17977/jptpp.v4i4.12344

[29] I. K. Nisa, L. Yuliati, and A. Hidayat, "Analisis Penguasaan Konsep melalui Pembelajaran Guided Inquiry berbantuan Modul Terintegrasi STEM pada Materi Fluida Dinamis," J. Pendidik. Teor. Penelitian, dan Pengemb., vol. 5, no. 6, p. 809, Jun. 2020, doi: 10.17977/jptpp.v5i6.13627. https://doi.org/10.17977/jptpp.v5i6.13627

[30] Parno, G. A. Permana, A. Hidayat, and M. Ali, "Improving Students Understanding on Fluid Dynamics through IBL-STEM Model with Formative Assessment," J. Phys. Conf. Ser., vol. 1747, no. 1, p. 012008, Feb. 2021, doi: 10.1088/1742-6596/1747/1/012008. https://doi.org/10.1088/1742-6596/1747/1/012008

[31] Parno, N. Mufti, K. A. Widuri, and M. Ali, "The effectiveness of experiential learning - STEM model with formative assessment in building students' mastery on fluid dynamics," J. Phys. Conf. Ser., vol. 1816, no. 1, p. 012051, Feb. 2021, doi: 10.1088/1742-6596/1816/1/012051. https://doi.org/10.1088/1742-6596/1816/1/012051

[32] T. R. Kelley and J. G. Knowles, "A conceptual framework for integrated STEM education," Int. J. STEM Educ., vol. 3, no. 1, p. 11, Dec. 2016, doi: 10.1186/s40594-016-0046-z. https://doi.org/10.1186/s40594-016-0046-z

[33] N. Y. Rustaman, E. Afianti, and S. Maryati, "STEM based learning to facilitate middle school students' conceptual change, creativity and collaboration in organization of living system topic," J. Phys. Conf. Ser., vol. 1013, p. 012021, May 2018, doi: 10.1088/1742-6596/1013/1/012021. https://doi.org/10.1088/1742-6596/1013/1/012021

[34] D. A. Kolb, Experiential Learning: Experience As The Source Of Learning And Development, 2nd ed. New Jersey: Pearson Education, Inc., 2015.

[35] R. Nuriyah, L. Yuliati, and E. Supriana, "Eksplorasi Penguasaan Konsep Menggunakan Experiential Learning pada Materi Hukum Newton," J. Pendidik. Teor. Penelitian, dan Pengemb., vol. 3, no. 10, pp. 1270-1277, 2018, doi: 10.17977/jptpp.v3i10.11608.

[36] M. CANNADY, "STEM and the City: A Report on STEM Education in the Great American Urban Public School System, by Clair T. Berube, Information Age Publishing, Charlotte, NC, USA, 2014. x + 114 pp. ISBN 978-1-62396-637-9.," Sci. Educ., vol. 100, no. 1, pp. 182-183, Jan. 2016, doi: 10.1002/sce.21201. https://doi.org/10.1002/sce.21201

[37] R. M. Capraro, M. M. Capraro, and J. R. Morgan, STEM Project-Based Learning: An Integrated Science, Technology, Engineering, and Mathematics (STEM) Approach. Rotterdam: SensePublishers, 2013. doi: 10.1007/978-94-6209-143-6. https://doi.org/10.1007/978-94-6209-143-6

[38] S. Han, R. Capraro, and M. M. Capraro, "How Science, Technology, Engineering, and Mathematics (STEM) Project-Based Learning (PBL) Affects High, Middle, and Low Achievers Differently: The Impact of Student Factors On Achievement," Int. J. Sci. Math. Educ., vol. 13, no. 5, pp. 1089-1113, Oct. 2015, doi: 10.1007/s10763-014-9526-0. https://doi.org/10.1007/s10763-014-9526-0

Downloads

Published

2024-10-31

Issue

Section

Articles