Synthesis and fabrication of superstrate and substrate Cu2ZnSnS4/CdS thin film solar cells utilizing copper powder as local materials

Authors

DOI:

https://doi.org/10.12928/jrkpf.v10i1.234

Keywords:

Solar cells, Thin film, Cu2ZnSnS4, Semiconductor, Solution process

Abstract

Cu2ZnSnS4 is a promising material for low-cost thin-film solar cells. This paper reports a new approach to fabricating a solar cell using a Superstrate and Substrate configuration. We utilized a non-vacuum deposition process to deposit Copper Zinc Tin Sulfate (CZTS) and Cadmium Sulphate (CdS) on a glass substrate. To achieve this, we adopted the sol-gel spin coating method for CZTS and the Chemical Bath Deposition (CBD) method for the CdS layer. The solar cell has two structures: ITO/Cu2ZnSnS4/CdS/Ag for substrate configuration and ITO/CdS/Cu2ZnSnS4/Ag for superstrate configuration. The Cu/(Zn+Sn) atomic ratio was set to 0.86, while Zn/Sn was set to 1.25. Our CZTS/CdS solar cell achieved a 48.7 × 10-6 % power conversion efficiency with a 1.40 eV band gap and 98.71 % external quantum efficiency at 373 nm for the superstrate configuration. For the substrate configuration, the power conversion efficiency was 19.0 × 10-6 % with a 1.49 eV bandgap and 95.74 % external quantum efficiency at 321 nm. Based on the results presented in the text, the CZTS solar cell with a superstrate configuration achieved a higher power conversion efficiency and external quantum efficiency than the substrate configuration. The superstrate configuration allowed for better light absorption in the CZTS layer and reduced the reflection of light back into the substrate. This configuration also prevented the back diffusion of CdS into CZTS and improved the electrical performance of the solar cell. Therefore, the superstrate configuration is more efficient than the substrate configuration for CZTS solar cells.

Author Biographies

Eka Cahya Prima, Universitas Pendidikan Indonesia

Solar Energy Materials Laboratory, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Bandung, Indonesia

Anggi Datiatur Rahmat, Universitas Pendidikan Indonesia

Solar Energy Materials Laboratory, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Bandung, Indonesia

Andhy Setiawan, Universitas Pendidikan Indonesia

Solar Energy Materials Laboratory, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Bandung, Indonesia

References

E. Dogan and F. Seker, "The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries," Renew. Sustain. Energy Rev., vol. 60, pp. 1074-1085, Jul. 2016, doi: 10.1016/j.rser.2016.02.006. https://doi.org/10.1016/j.rser.2016.02.006

A. Hobson, "Physics literacy, energy and the environment," Phys. Educ., vol. 38, no. 2, pp. 109-114, Mar. 2003, doi: 10.1088/0031-9120/38/2/301. https://doi.org/10.1088/0031-9120/38/2/301

A. R. Pratami, L. S. Riza, and L. Rusyati, "Investigating junior high school students' perception of global warming topic using semantic network analysis," J. Phys. Conf. Ser., vol. 1806, no. 1, p. 012124, Mar. 2021, doi: 10.1088/1742-6596/1806/1/012124. https://doi.org/10.1088/1742-6596/1806/1/012124

REN21, "Renewables 2015 Global Status Report," Sep. 2015. [Online]. Available: https://www.ren21.net/wp-content/uploads/2019/05/GSR2015_Full-Report_English.pdf.

H. S. Nugroho et al., "A progress review on the modification of CZTS(e)-based thin-film solar cells," J. Ind. Eng. Chem., vol. 105, pp. 83-110, Jan. 2022, doi: 10.1016/j.jiec.2021.09.010. https://doi.org/10.1016/j.jiec.2021.09.010

E. C. Prima, L. H. Wong, A. Ibrahim, Nugraha, and B. Yuliarto, "Solution-processed pure Cu2ZnSnS4/CdS thin film solar cell with 7.5% efficiency," Opt. Mater. (Amst)., vol. 114, p. 110947, Apr. 2021, doi: 10.1016/j.optmat.2021.110947. https://doi.org/10.1016/j.optmat.2021.110947

R. Inglesi-Lotz and E. Dogan, "The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub- Saharan Africa's Βig 10 electricity generators," Renew. Energy, vol. 123, pp. 36-43, Aug. 2018, doi: 10.1016/j.renene.2018.02.041. https://doi.org/10.1016/j.renene.2018.02.041

M. Ravindiran and C. Praveenkumar, "Status review and the future prospects of CZTS based solar cell - A novel approach on the device structure and material modeling for CZTS based photovoltaic device," Renew. Sustain. Energy Rev., vol. 94, pp. 317-329, Oct. 2018, doi: 10.1016/j.rser.2018.06.008. https://doi.org/10.1016/j.rser.2018.06.008

H. Batih and C. Sorapipatana, "Characteristics of urban households׳ electrical energy consumption in Indonesia and its saving potentials," Renew. Sustain. Energy Rev., vol. 57, pp. 1160-1173, May 2016, doi: 10.1016/j.rser.2015.12.132. https://doi.org/10.1016/j.rser.2015.12.132

B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, "Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu 2 ZnSnS 4 absorber," Prog. Photovoltaics Res. Appl., vol. 21, no. 1, pp. 72-76, Jan. 2013, doi: 10.1002/pip.1174. https://doi.org/10.1002/pip.1174

M. Kumar and C. Persson, "Cu2ZnSnS4 and Cu2ZnSnSe4 as Potential Earth-Abundant Thin-Film Absorber Materials: A Density Functional Theory Study," Int. J. Theor. Appl. Sci., vol. 5, no. 1, pp. 1-8, 2013, [Online]. Available: http://www.researchtrend.net/ijtas_2013/1 DR MUKESH.pdf.

D. Han et al., "Deep electron traps and origin of p-type conductivity in the earth-abundant solar-cell material Cu2ZnSnS4," Phys. Rev. B, vol. 87, no. 15, p. 155206, Apr. 2013, doi: 10.1103/PhysRevB.87.155206. https://doi.org/10.1103/PhysRevB.87.155206

T. K. Todorov, K. B. Reuter, and D. B. Mitzi, "High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber," Adv. Mater., vol. 22, no. 20, pp. E156-E159, May 2010, doi: 10.1002/adma.200904155. https://doi.org/10.1002/adma.200904155

A. H. Alami et al., "Low‐cost dye‐sensitized solar cells with ball‐milled tellurium‐doped graphene as counter electrodes and a natural sensitizer dye," Int. J. Energy Res., vol. 43, no. 11, pp. 5824-5833, Sep. 2019, doi: 10.1002/er.4684. https://doi.org/10.1002/er.4684

W. Li, J. M. R. Tan, S. W. Leow, S. Lie, S. Magdassi, and L. H. Wong, "Recent Progress in Solution-Processed Copper-Chalcogenide Thin-Film Solar Cells," Energy Technol., vol. 6, no. 1, pp. 46-59, Jan. 2018, doi: 10.1002/ente.201700734. https://doi.org/10.1002/ente.201700734

S. Abdelhaleem et al., "Tuning the Properties of CZTS Films by Controlling the Process Parameters in Cost-Effective Non-vacuum Technique," J. Electron. Mater., vol. 47, no. 12, pp. 7085-7092, Dec. 2018, doi: 10.1007/s11664-018-6636-4. https://doi.org/10.1007/s11664-018-6636-4

Q.-M. Chen, Z.-Q. Li, Y. Ni, S.-Y. Cheng, and X.-M. Dou, "Doctor-bladed Cu 2 ZnSnS 4 light absorption layer for low-cost solar cell application," Chinese Phys. B, vol. 21, no. 3, p. 038401, Mar. 2012, doi: 10.1088/1674-1056/21/3/038401. https://doi.org/10.1088/1674-1056/21/3/038401

B. O'Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, no. 6346, pp. 737-740, Oct. 1991, doi: 10.1038/353737a0. https://doi.org/10.1038/353737a0

H. Hug, M. Bader, P. Mair, and T. Glatzel, "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Appl. Energy, vol. 115, pp. 216-225, Feb. 2014, doi: 10.1016/j.apenergy.2013.10.055. https://doi.org/10.1016/j.apenergy.2013.10.055

D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power," J. Appl. Phys., vol. 25, no. 5, pp. 676-677, May 1954, doi: 10.1063/1.1721711. https://doi.org/10.1063/1.1721711

T. Kato, "Cu(In,Ga)(Se,S) 2 solar cell research in Solar Frontier: Progress and current status," Jpn. J. Appl. Phys., vol. 56, no. 4S, p. 04CA02, Apr. 2017, doi: 10.7567/JJAP.56.04CA02. https://doi.org/10.7567/JJAP.56.04CA02

E. C. Prima, H. S. Nugroho, Nugraha, G. Refantero, C. Panatarani, and B. Yuliarto, "Performance of the dye-sensitized quasi-solid state solar cell with combined anthocyanin-ruthenium photosensitizer," RSC Adv., vol. 10, no. 60, pp. 36873-36886, 2020, doi: 10.1039/D0RA06550A. https://doi.org/10.1039/D0RA06550A

C.-R. Zhang et al., "DFT and TD-DFT study on structure and properties of organic dye sensitizer TA-St-CA," Curr. Appl. Phys., vol. 10, no. 1, pp. 77-83, Jan. 2010, doi: 10.1016/j.cap.2009.04.018. https://doi.org/10.1016/j.cap.2009.04.018

E. C. Prima et al., "The effect of CuZn+ZnCu defect complex on Cu2ZnSnS4 thin film solar cell: A density functional theory study," Mater. Chem. Phys., vol. 296, p. 127192, Feb. 2023, doi: 10.1016/j.matchemphys.2022.127192. https://doi.org/10.1016/j.matchemphys.2022.127192

S. Liu et al., "A Review on Additives for Halide Perovskite Solar Cells," Adv. Energy Mater., vol. 10, no. 13, p. 1902492, Apr. 2020, doi: 10.1002/aenm.201902492. https://doi.org/10.1002/aenm.201902492

A. Hidayatno, A. D. Setiawan, I. M. Wikananda Supartha, A. O. Moeis, I. Rahman, and E. Widiono, "Investigating policies on improving household rooftop photovoltaics adoption in Indonesia," Renew. Energy, vol. 156, pp. 731-742, Aug. 2020, doi: 10.1016/j.renene.2020.04.106. https://doi.org/10.1016/j.renene.2020.04.106

A. M. Omer, "Sustainable Energy Development, the Role of Renewables and Global Warming," J. Sustain. Dev. Stud., vol. 1, no. 1, pp. 1-67, 2012, [Online]. Available: https://infinitypress.info/index.php/jsds/article/viewFile/8/10.

Y. Gong et al., "Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V," Sci. China Mater., vol. 64, no. 1, pp. 52-60, Jan. 2021, doi: 10.1007/s40843-020-1408-x. https://doi.org/10.1007/s40843-020-1408-x

Z. Su et al., "Device Postannealing Enabling over 12% Efficient Solution‐Processed Cu 2 ZnSnS 4 Solar Cells with Cd 2+ Substitution," Adv. Mater., vol. 32, no. 32, p. 2000121, Aug. 2020, doi: 10.1002/adma.202000121. https://doi.org/10.1002/adma.202000121

J. P. Sawant and R. B. Kale, "Surfactant mediated TiO2 photoanodes and Cu2ZnSnS4 counter electrodes for high efficient dye sensitized solar cells," Mater. Lett., vol. 265, p. 127407, Apr. 2020, doi: 10.1016/j.matlet.2020.127407. https://doi.org/10.1016/j.matlet.2020.127407

V. Kumar and V. G. Masih, "Fabrication and Characterization of Screen-Printed Cu2ZnSnS4 Films for Photovoltaic Applications," J. Electron. Mater., vol. 48, no. 4, pp. 2195-2199, Apr. 2019, doi: 10.1007/s11664-019-07053-5. https://doi.org/10.1007/s11664-019-07053-5

M. Bercx, N. Sarmadian, R. Saniz, B. Partoens, and D. Lamoen, "First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon," Phys. Chem. Chem. Phys., vol. 18, no. 30, pp. 20542-20549, 2016, doi: 10.1039/C6CP03468C. https://doi.org/10.1039/C6CP03468C

N. Sarmadian, R. Saniz, B. Partoens, and D. Lamoen, "First-principles study of the optoelectronic properties and photovoltaic absorber layer efficiency of Cu-based chalcogenides," J. Appl. Phys., vol. 120, no. 8, p. 085707, Aug. 2016, doi: 10.1063/1.4961562. https://doi.org/10.1063/1.4961562

W. Wang et al., "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency," Adv. Energy Mater., vol. 4, no. 7, p. 1301465, May 2014, doi: 10.1002/aenm.201301465. https://doi.org/10.1002/aenm.201301465

J. Kaza, M. R. Pasumarthi, and A. P.S., "Superstrate and substrate thin film configuration of CdS/CZTS solar cell fabricated using SILAR method," Opt. Laser Technol., vol. 131, p. 106413, Nov. 2020, doi: 10.1016/j.optlastec.2020.106413. https://doi.org/10.1016/j.optlastec.2020.106413

V. V. Satale and S. V. Bhat, "Superstrate type CZTS solar cell with all solution processed functional layers at low temperature," Sol. Energy, vol. 208, pp. 220-226, Sep. 2020, doi: 10.1016/j.solener.2020.07.055. https://doi.org/10.1016/j.solener.2020.07.055

S. Rühle, "Tabulated values of the Shockley-Queisser limit for single junction solar cells," Sol. Energy, vol. 130, pp. 139-147, Jun. 2016, doi: 10.1016/j.solener.2016.02.015. https://doi.org/10.1016/j.solener.2016.02.015

W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells," J. Appl. Phys., vol. 32, no. 3, pp. 510-519, Mar. 1961, doi: 10.1063/1.1736034. https://doi.org/10.1063/1.1736034

J. Gilot, M. M. Wienk, and R. A. J. Janssen, "Measuring the External Quantum Efficiency of Two-Terminal Polymer Tandem Solar Cells," Adv. Funct. Mater., vol. 20, no. 22, pp. 3904-3911, Nov. 2010, doi: 10.1002/adfm.201001167. https://doi.org/10.1002/adfm.201001167

C. Ma et al., "Effect of CZTS/CdS interfaces deposited with sputtering and CBD methods on Voc deficit and efficiency of CZTS solar cells," J. Alloys Compd., vol. 817, p. 153329, Mar. 2020, doi: 10.1016/j.jallcom.2019.153329. https://doi.org/10.1016/j.jallcom.2019.153329

J. Tauc, "Optical properties and electronic structure of amorphous Ge and Si," Mater. Res. Bull., vol. 3, no. 1, pp. 37-46, Jan. 1968, doi: 10.1016/0025-5408(68)90023-8. https://doi.org/10.1016/0025-5408(68)90023-8

J. Tauc, R. Grigorovici, and A. Vancu, "Optical Properties and Electronic Structure of Amorphous Germanium," Phys. status solidi, vol. 15, no. 2, pp. 627-637, 1966, doi: 10.1002/pssb.19660150224. https://doi.org/10.1002/pssb.19660150224

Downloads

Published

2023-04-30

Issue

Section

Articles