Utilizing Anadara granosa Shells and PVA for Porous Hydroxyapatite Synthesis
DOI:
https://doi.org/10.26555/ijce.v1i2.663Keywords:
Anadara Granosa, Polyvinyl Alcohol, Porous hydroxyapatite, XRD, Compressive strengthAbstract
The majority of the inorganic material that makes up teeth and bones is called hydroxyapatite (Ca10(PO4)6(OH)2), and it is produced by isolating calcium oxide (CaO) from the high calcium carbonate content of anadara granosa shells, which is over 98%. The porous HAp is the type of hydroxyapatite that can be used for bone repair. The aim of this work is to use the polymer polyvinyl alcohol to synthesis porous hydroxyapatite from anadara granosa shell. The anadara granosa powder (AGP) was furnaced for 3 hour at 800oC. CaO powder was produced. Then, the CaO powder was treated with (NH4)2HPO4 at a mol Ca/P 1.67 to obtained the HAp. Then, HAp is combined with a PVA polymer at a 10:1 ratio. Compressive strength tests, FTIR, SEM, and XRD are carried out. The compressive strength resulted for HAp and porous HAp were14.58 and 50.43 Mpa., respectively. The results indicated that PVA achieved a good compressive strength with Hydroxyapatite – Anadara granosa shell.
References
F. Pouresmaeili, B. Kamalidehghan, M. Kamarehei, and Y. M. Goh, “A comprehensive overview on osteoporosis and its risk factors,” Therapeutics and Clinical Risk Management, vol. 14. Dove Medical Press Ltd., pp. 2029–2049, 2018. doi: 10.2147/TCRM.S138000.
I. Bogdanoviciene, A. Beganskiene, K. Tõnsuaadu, J. Glaser, H. J. Meyer, and A. Kareiva, “Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueous sol-gel processing,” Mater Res Bull, vol. 41, no. 9, pp. 1754–1762, Sep. 2006, doi: 10.1016/j.materresbull.2006.02.016.
R. Yuliana, E. A. Rahim, and J. Hardi, “Sintesis Hidroksiapatit Dari Tulang Sapi Dengan Metode Basah Pada Berbagai Waktu Pengadukan Dan Suhu Sintering,” Kovalen, vol. 3, no. 3, p. 201, 2017, doi: 10.22487/j24775398.2017.v3.i3.9329.
L. Anggresani, Y. N. Sari, and R. Rahmadevi, “Hydroxyapatite (HAp) From Tenggiri Fish Bones As Abrasive Material In Toothpaste Formula,” Jurnal Kimia Valensi, vol. 7, no. 1, pp. 1–9, 2021, doi: 10.15408/jkv.v7i1.19165.
G. Afranita, S. Anita, T. A. Hanifah, M. S. Program Studi, and B. Kimia Analitik Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam, “Potensi Abu Cangkang Kerang Darah (Anadara Granosa) Sebagai Adsorben Ion Timah Putih,” Jurnal Online Mahasiswa FMIPA, vol. 1, no. 1, pp 1-5, 2014.
N. Sri Wardani and A. Fadli, “Sintesis Hidroksiapatit dari Cangkang Telur dengan Metode Presipitasi,” JOM FTeknik, vol. 2, no. 1, pp 1-6, 2015.
S. GS, D. Deswita, A. Wulanawati, and A. Romawati, “Sintesis Hidroksiapatit Berpori dengan Porogen Kitosan dan Karakterisasinya,” Jurnal Kimia dan Kemasan, vol. 34, no. 1, pp. 220–225, 2012, doi: 10.24817/jkk.v34i1.1856.
Y. Azis, N. Jamarun, S. Arief, and H. Nur, “Facile synthesis of hydroxyapatite particles from cockle shells (Anadaragranosa) by hydrothermal method,” Oriental Journal of Chemistry, vol. 31, no. 2, pp. 1099–1105, 2015, doi: 10.13005/ojc/310261.
Saryati, “Hidrosiapatit berpori dari kulit kerang,” Jurnal Sains Materi Indonesia, no. April, pp. 31–35, 2012.
D. R. E. Atiek Rostika Noviyanti, Haryono, Rinal Pandu, “Cangkang Telur Ayam sebagai Sumber Kalsium dalam Pembuatan Hidroksiapatit untuk Aplikasi Graft Tulang,” Chimica et Natura Acta, vol. 5, no. 3, pp. 107–111, 2017.
S. Rahayu, D. W. Kurniawidi, and A. Gani, “PEMANFAATAN LIMBAH CANGKANG KERANG MUTIARA (PINCTADA MAXIMA) SEBAGAI SUMBER HIDROKSIAPATIT,” Jurnal Pendidikan Fisika dan Teknologi, vol. 4, no. 2, pp. 226-231, 2018.
L. Anggresani, S. Perawati, and I. J. Rahayu, “Limbah Tulang Ikan Tenggiri (Scomberomorus guttatus) Sebagai Sumber Kalsium Pada Pembuatan Hidroksiapatit,” Jurnal Katalisator, vol. 4, no. 2, pp. 133–140, 2019.
F. Akbar et al., “Sintesis Ca2P2O7 dari Limbah Kerang sebagai Bahan Baku Limbah Cangkang Kerang dengan Metode Solvothermal,” Jurnal Fisika dan Aplikasinya, vol. 15, no. 3, p. 110, 2019, doi: 10.12962/j24604682.v15i3.4707.
S. Cahyaningrum, N. Herdyastuty, F. Wiana, B. Devina, and D. Supangat, “Synthesis of Hydroxyapatite from Crab Shell (Scylla serrata) Waste With Different Methods Added Phosphate,” vol. 171, no. Snk, pp. 67–69, 2018, doi: 10.2991/snk-18.2018.15.
M. Sirait, K. Sinulingga, N. Siregar, D. Fitri, and S. T. W. Padang, “Thermal and Mechanical Properties a Membrane of the Mixing PVA Nanocomposite and Limestone Hydroxyapatite,” J Phys Conf Ser, 2021, doi: 10.1088/1742-6596/1811/1/012016.
P. Wang, C. Li, H. Gong, X. Jiang, H. Wang, and K. Li, “Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process,” Powder Technol, vol. 203, no. 2, pp. 315–321, 2010, doi: 10.1016/j.powtec.2010.05.023.
F. Nagata, Y. Yamauchi, M. Tomita, and K. Kato, “Hydrothermal synthesis of hydroxyapatite nanoparticles and their protein adsorption behavior,” Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, vol. 121, no. 1417, pp. 797–801, 2013, doi: 10.2109/jcersj2.121.797.
L. M. Mathieu, T. L. Mueller, P. E. Bourban, D. P. Pioletti, R. Müller, and J. A. E. Månson, “Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 6, pp. 905–916, 2006, doi: 10.1016/j.biomaterials.2005.07.015.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Lia Anggresani, Nurmelinda Nurmelinda, Yulianis Yulianis
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.