Review : Exploration of Squalene from Natural Materials as its Potential in Health and Food Fields

Authors

  • Adi Permadi Ahmad Dahlan University
  • Mutiara Wilson Ahmad Dahlan University

DOI:

https://doi.org/10.26555/ijce.v2i2.1423

Keywords:

Natural Squalene , Squalene, Sterol Biosynthesis, Sustainable Extraction, Health Applications

Abstract

Squalene, a natural isoprenoid, plays a critical role in sterol biosynthesis and exhibits various health benefits, including antioxidant, anti-inflammatory, and antitumor properties. Found in sources such as shark liver oil, amaranth, olive oil, and microbial species, its demand has surged across pharmaceutical, cosmetic, and food industries. However, traditional extraction methods, predominantly from shark liver, raise sustainability concerns. This study explores alternative sources and production strategies, focusing on plant-based and microbial synthesis of squalene. Amaranth seeds and olive oil were highlighted as promising renewable sources due to their high squalene content. Advances in synthetic biology and metabolic engineering have enabled microbial platforms, such as genetically modified yeasts and microalgae, to produce pharmaceutical-grade squalene sustainably. Moreover, the development of innovative extraction techniques, such as supercritical CO₂ extraction, enhances yield and purity while minimizing environmental impact. The research further emphasizes squalene’s potential as a precursor for cholesterol, hormones, and vitamins, alongside its role in improving human health through applications in vaccines, cardiovascular protection, and cancer prevention. Future work should prioritize optimizing extraction methods, exploring untapped natural sources, and scaling microbial production to address the growing global demand sustainably.

References

[1] N. Shimizu, J. Ito, S. Kato, T. Eitsuka, T. Miyazawa, and K. Nakagawa, “Significance of squalene in rice bran oil and perspectives on squalene oxidation,” Journal of Nutritional Science and Vitaminology, vol. 65, pp. S62–S66, 2019, doi: 10.3177/jnsv.65.S62.

[2] J. Sánchez-Marco et al., “Thioredoxin domain containing 5 is involved in the hepatic storage of squalene into lipid droplets in a sex-specific way,” Journal of Nutritional Biochemistry, vol. 124, 2024, doi: 10.1016/j.jnutbio.2023.109503.

[3] R. Do, R. S. Kiss, D. Gaudet, and J. C. Engert, “Squalene synthase: A critical enzyme in the cholesterol biosynthesis pathway,” Clinical Genetics, vol. 75, no. 1, pp. 19–29, 2009, doi: 10.1111/j.1399-0004.2008.01099.x.

[4] M. Bettiga, U. Rova, P. Christakopoulos, and L. Matsakas, “Microbial genetic engineering approach to replace shark livering for squalene,” vol. 40, no. 10, pp. 1261–1273, 2022.

[5] T. Rosales-Garcia, C. Jimenez-Martinez, and G. Davila-Ortiz, “Squalene Extraction: Biological Sources and Extraction Methods,” International Journal of Environment, Agriculture and Biotechnology, vol. 2, no. 4, pp. 1662–1670, 2017, doi: 10.22161/ijeab/2.4.26.

[6] Y. Jiang et al., “Volatile squalene from a nonseed plant Selaginella moellendorffii: Emission and biosynthesis,” Plant Physiology and Biochemistry, vol. 96, pp. 1–8, 2015, doi: 10.1016/j.plaphy.2015.07.010.

[7] M. Maleki, O. N. Dehbakri, D. D. Zeidabadi, and S. Shakeri, “Reaserch Paper,” vol. 3, no. 1, pp. 24–30, 2023.

[8] A. Mendes, J. Azevedo-Silva, and J. C. Fernandes, “From Sharks to Yeasts: Squalene in the Development of Vaccine Adjuvants,” Pharmaceuticals, vol. 15, no. 3, 2022, doi: 10.3390/ph15030265.

[9] M. A. Lozano-grande, S. Gorinstein, E. Espitia-rangel, D. Gloria, and A. L. Mart, “Plant Sources , Extraction Methods , and Uses of Squalene,” vol. 2018, 2018.

[10] Y. Cheng et al., “A comparative transcriptomics analysis reveals ethylene glycol derivatives of squalene ameliorate excessive lipogenesis and inflammatory response in 3T3-L1 preadipocytes,” Heliyon, vol. 10, no. 5, p. e26867, 2024, doi: 10.1016/j.heliyon.2024.e26867.

[11] H. Chi et al., “Plant Stress Identification of reference genes via real-time quantitative PCR for investigation of the transcriptomic basis of the squalene biosynthesis in different tissues on olives under drought stress,” vol. 14, no. March, 2024.

[12] X. Yan, S. Pan, T. Li, W. Huang, and M. Zhou, “Squalene activates Wnt / β -Catenin signaling pathway to mediate NF- κ B pathway to regulate inflammatory response and disease resistance in hybrid grouper ( ♀ Epinephelus fuscoguttatus × ♂ E . lanceolatu ),” vol. 33, no. October, 2023.

[13] S. S. Kumar, V. Manasa, A. W. Tumaney, B. B. K., S. R. Chaudhari, and P. Giridhar, “Chemical composition, nutraceuticals characterization, NMR confirmation of squalene and antioxidant activities of: Basella rubra L. seed oil,” RSC Advances, vol. 10, no. 53, pp. 31863–31873, 2020, doi: 10.1039/d0ra06048h.

[14] S. Wang et al., “Sustainable biosynthesis of squalene from waste cooking oil by the yeast Yarrowia lipolytica,” Metabolic Engineering Communications, vol. 18, no. June, 2024, doi: 10.1016/j.mec.2024.e00240.

[15] A. Patel, M. Bettiga, U. Rova, P. Christakopoulos, and L. Matsakas, “Microbial genetic engineering approach to replace shark livering for squalene,” Trends in Biotechnology, vol. 40, no. 10, pp. 1261–1273, 2022, doi: 10.1016/j.tibtech.2022.03.008.

[16] D. M. Pham, B. Boussouira, D. Moyal, and Q. L. Nguyen, “Oxidization of squalene, a human skin lipid: a new and reliable marker of environmental pollution studies,” International Journal of Cosmetic Science, vol. 37, no. 4, pp. 357–365, 2015, doi: 10.1111/ics.12208.

[17] K. Paramasivan and S. Mutturi, “Recent advances in the microbial production of squalene,” World Journal of Microbiology and Biotechnology, vol. 38, no. 5, pp. 1–21, 2022, doi: 10.1007/s11274-022-03273-w.

[18] O. Popa, N. E. Bəbeanu, I. Popa, S. Niţə, and C. E. Dinu-Pârvu, “Methods for obtaining and determination of squalene from natural sources,” BioMed Research International, vol. 2015, 2015, doi: 10.1155/2015/367202.

[19] H. Soetjipto, M. Krisdayanti, and N. R. Aminu, “Composition of fatty acids and squalene content of wild spinach (Amaranthus dubius mart) seed oil,” Makara Journal of Science, vol. 25, no. 2, pp. 85–90, 2021, doi: 10.7454/mss.v25i2.1192.

[20] Y. J. Park et al., “Molecular cloning, expression and characterization of a squalene synthase gene from grain amaranth (Amaranthus cruentus L.),” Japan Agricultural Research Quarterly, vol. 50, no. 4, pp. 307–317, 2016, doi: 10.6090/jarq.50.307.

[21] T. D. Kim, J. Y. Han, G. H. Huh, and Y. E. Choi, “Expression and functional characterization of three squalene synthase genes associated with saponin biosynthesis in panax ginseng,” Plant and Cell Physiology, vol. 52, no. 1, pp. 125–137, 2011, doi: 10.1093/pcp/pcq179.

[22] K. A. Kalariya, R. P. Meena, L. Poojara, D. Shahi, and S. Patel, “Characterization of squalene synthase gene from Gymnema sylvestre R. Br.,” Beni-Suef University Journal of Basic and Applied Sciences, vol. 10, no. 1, pp. 0–10, 2021, doi: 10.1186/s43088-020-00094-4.

[23] M. A. Gitea, S. G. Bungau, D. Gitea, B. M. Pasca, A. L. Purza, and A. F. Radu, “Evaluation of the Phytochemistry–Therapeutic Activity Relationship for Grape Seeds Oil,” Life, vol. 13, no. 1, pp. 1–32, 2023, doi: 10.3390/life13010178.

[24] S. Suhendra, T. Pantoiyo, S. Fazlia, E. Sulistiawati, and R. T. Evitasari, “Bioprocess Potentials of Squalene from Thraustochytrids Microalgae for Nutraceuticals in New Normal Era Isolated from Indonesian Mangroves: A Review,” CHEMICA: Jurnal Teknik Kimia, vol. 8, no. 1, p. 18, 2021, doi: 10.26555/chemica.v8i1.19121.

[25] G. Beltrán, M. E. Bucheli, M. P. Aguilera, A. Belaj, and A. Jimenez, “Squalene in virgin olive oil: Screening of variability in olive cultivars,” European Journal of Lipid Science and Technology, vol. 118, no. 8, pp. 1250–1253, 2016, doi: 10.1002/ejlt.201500295.

[26] A. Ali et al., “Computational characterization and in vivo expression of squalene synthase gene in different tissues of Artemisia annua L. plants,” South African Journal of Botany, vol. 105, pp. 169–177, 2016, doi: 10.1016/j.sajb.2016.03.009.

[27] J. Qian et al., “Positive Selection of Squalene Synthase in Cucurbitaceae Plants,” vol. 2019, 2019.

[28] H. He, Y. I. Cai, M. ei Sun, and H. A. Corke, “Journal of Agricultural and Food Chemistry Volume 50 issue 2 2002 [doi 10.1021%2Fjf010918p] He, Han-Ping; Cai, Yizhong; Sun, Mei; Corke, Harold -- Extraction and Purification of Squalene from Amaranth.pdf,” pp. 368–372, 2002.

[29] J. Shinozaki, M. Shibuya, K. Masuda, and Y. Ebizuka, “Squalene cyclase and oxidosqualene cyclase from a fern,” FEBS Letters, vol. 582, no. 2, pp. 310–318, 2008, doi: 10.1016/j.febslet.2007.12.023.

[30] Q. Yang et al., “Genetic regulation and fermentation strategy for squalene production in Schizochytrium sp.,” Applied Microbiology and Biotechnology, vol. 106, no. 7, pp. 2415–2431, 2022, doi: 10.1007/s00253-022-11887-1.

[31] Ç. Yarkent and S. S. Oncel, “Recent Progress in Microalgal Squalene Production and Its Cosmetic Application,” Biotechnology and Bioprocess Engineering, vol. 27, no. 3, pp. 295–305, 2022, doi: 10.1007/s12257-021-0355-z.

[32] L. Lindo, R. E. Cardoza, A. Lorenzana, P. A. Casquero, and S. Gutiérrez, “Identification of plant genes putatively involved in the perception of fungal ergosterol-squalene,” Journal of Integrative Plant Biology, vol. 62, no. 7, pp. 927–947, 2020, doi: 10.1111/jipb.12862.

[33] V. Zambojova, S. Zuzana, P. Griac, and I. Hapala, “Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae,” 2013, doi: 10.1111/1567-1364.12107.

[34] L. J. Wei et al., “Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae,” Biotechnology and Bioengineering, vol. 115, no. 7, pp. 1793–1800, 2018, doi: 10.1002/bit.26595.

[35] M. P. Bhat et al., “In-vitro investigation on the biological activities of squalene derived from the soil fungus Talaromyces pinophilus,” Heliyon, vol. 9, no. 11, 2023, doi: 10.1016/j.heliyon.2023.e21461.

[36] L. V. Herrera-Marcos et al., “Dietary squalene supplementation decreases triglyceride species and modifies phospholipid lipidomic profile in the liver of a porcine model of non-alcoholic steatohepatitis,” Journal of Nutritional Biochemistry, vol. 112, 2023, doi: 10.1016/j.jnutbio.2022.109207.

[37] J. Tian et al., “Plant-derived squalene supplementation improves growth performance and alleviates acute oxidative stress-induced growth retardation and intestinal damage in piglets,” Animal Nutrition, vol. 15, pp. 386–398, 2023, doi: 10.1016/j.aninu.2023.09.001.

[38] M. Jawad, R. Schoop, A. Suter, P. Klein, and R. Eccles, “Perfil de eficacia y seguridad de Echinacea purpurea en la prevención de episodios de resfriado común: Estudio clínico aleatorizado, doble ciego y controlado con placebo,” Revista de Fitoterapia, vol. 13, no. 2, pp. 125–135, 2013, doi: 10.1002/jsfa.

[39] M. B. Fagundes et al., “Green microsaponification-based method for gas chromatography determination of sterol and squalene in cyanobacterial biomass,” Talanta, vol. 224, no. October 2020, 2021, doi: 10.1016/j.talanta.2020.121793.

[40] J. Cheng et al., “Development of a green Komagataella phaffii cell factory for sustainable production of plant-derived sesquiterpene (–)-α-bisabolol,” Synthetic and Systems Biotechnology, vol. 10, no. 1, pp. 120–126, 2025, doi: 10.1016/j.synbio.2024.09.006.

[41] Amit, S. Kumari, R. Jamwal, P. Suman, and D. K. Singh, “Expeditious and accurate detection of palm oil adulteration in virgin coconut oil by utilizing ATR-FTIR spectroscopy along with chemometrics and regression models,” Food Chemistry Advances, vol. 3, no. November 2022, p. 100377, 2023, doi: 10.1016/j.focha.2023.100377.

[42] S. Potijun, S. Jaingam, N. Sanevas, S. Vajrodaya, and A. Sirikhachornkit, “Green microalgae strain improvement for the production of sterols and squalene,” Plants, vol. 10, no. 8, pp. 1–13, 2021, doi: 10.3390/plants10081673.

[43] J. D. Bibik et al., “Pathway Engineering, Re-targeting, and Synthetic Sca ff olding Improve the Production of Squalene in Plants,” 2022, doi: 10.1021/acssynbio.2c00051.

[44] K. Unland et al., “Functional characterization of squalene synthase and squalene epoxidase in Taraxacum koksaghyz,” Plant Direct, vol. 2, no. 6, pp. 1–15, 2018, doi: 10.1002/pld3.63.

[45] W. Yu et al., “Investigation of the Effects of Squalene and Squalene Epoxides on the Homeostasis of Coenzyme Q10 in Rats by UPLC-Orbitrap MS,” Chemistry and Biodiversity, vol. 17, no. 8, 2020, doi: 10.1002/cbdv.202000243.

[46] E. Drozdíková, M. Garaiová, Z. Csáky, M. Obernauerová, and I. Hapala, “Production of squalene by lactose-fermenting yeast Kluyveromyces lactis with reduced squalene epoxidase activity,” Letters in Applied Microbiology, vol. 61, no. 1, pp. 77–84, 2015, doi: 10.1111/lam.12425.

[47] B. Pattanaik, E. Englund, N. Nolte, and P. Lindberg, “Introduction of a green algal squalene synthase enhances squalene accumulation in a strain of Synechocystis sp. PCC 6803,” Metabolic Engineering Communications, vol. 10, no. February, p. e00125, 2020, doi: 10.1016/j.mec.2020.e00125.

[48] A. K. Singh et al., “Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance,” Plant Biotechnology Journal, vol. 13, no. 9, pp. 1287–1299, 2015, doi: 10.1111/pbi.12347.

[49] J. X. Gao, Y. G. Chen, D. Sen Li, L. Lin, Y. Liu, and S. H. Li, “Cloning and Functional Characterization of a Squalene Synthase from Paris polyphylla var. yunnanensis,” Chemistry and Biodiversity, vol. 18, no. 7, pp. 1–10, 2021, doi: 10.1002/cbdv.202100342.

[50] P. Peltola et al., “Visceral obesity is associated with high levels of serum squalene,” Obesity, vol. 14, no. 7, pp. 1155–1163, 2006, doi: 10.1038/oby.2006.132.

[51] C. Vriet, R. Eugenia, and C. Reuzeau, “From squalene to brassinolide: The steroid metabolic and signaling pathways across the plant kingdom,” Molecular Plant, vol. 6, no. 6, pp. 1738–1757, 2013, doi: 10.1093/mp/sst096.

[52] M. T. Ta et al., “Accumulation of squalene is associated with the clustering of lipid droplets,” FEBS Journal, vol. 279, no. 22, pp. 4231–4244, 2012, doi: 10.1111/febs.12015.

[53] B. Zare, Z. Sepehrizadeh, M. A. Faramarzi, M. Soltany-Rezaee-Rad, S. Rezaie, and A. R. Shahverdi, “Antifungal activity of biogenic tellurium nanoparticles against Candida albicans and its effects on squalene monooxygenase gene expression,” Biotechnology and Applied Biochemistry, vol. 61, no. 4, pp. 395–400, 2014, doi: 10.1002/bab.1180.

[54] P. Liao, X. Chen, M. Wang, T. J. Bach, and M. L. Chye, “Improved fruit α-tocopherol, Carotenoid, Squalene And Phytosterol Contents Through Manipulation Of Brassica Juncea 3-Hydroxy-3-Methylglutaryl-Coa Synthase1 in transgenic tomato,” Plant Biotechnology Journal, vol. 16, no. 3, pp. 784–796, 2018, doi: 10.1111/pbi.12828.

Downloads

Published

2024-09-30

Issue

Section

Articles