Mechanical Characteristics of Concrete with Addition of Nickel Slag Waste as Aggregates

Authors

  • Safriyati Pelupessy Universitas Ahmad Dahlan
  • Zahrul Mufrodi Universitas Ahmad Dahlan
  • Totok Eka Suharto Universitas Ahmad Dahlan

DOI:

https://doi.org/10.26555/ijce.v2i2.1102

Keywords:

Aggregate, Compressive Strength, Concrete, Density, Ferronickel slag

Abstract

Ferronickel slag is a waste product of the nickel metal smelting industry. PT. Virtue Dragon Nickel Industry is a company located in Konawe, Southeast Sulawesi Province, which is the first ferronickel and stainless-steel industrial area in Indonesia. Since 2017 until now, the capacity of the ferronickel smelting industry in the company is 600,000 tons. From the ferronickel smelting process, slag waste of around 3 million tons has also been produced which has not been processed or utilized. Slag waste is feared to disrupt the environment if not managed or utilized properly. This study aims to study the utilization of nickel slag waste as a substitute for fine and coarse aggregate in concrete. This study compares the mechanical properties of concrete using nickel slag material with the use of natural materials in the form of gravel and sand taken from the Konaweha River. The study was started with the preparation of nickel slag in the size of coarse aggregate 10-20 mm, and fine aggregate that passes 20 mesh. Nickel slag was tested for its content or composition. Slag was mixed into a concrete mixture containing sand, gravel, cement with a certain composition. The slag content was added at 0, 10, 20 and 30%. The stirred mixture was then tested for slump with an Abrams cylinder with a lower diameter of 20 cm, an upper diameter of 10 cm and a height of 30 cm. The mixture was molded in the form of a cube measuring 15 cm x 15 cm x 15 cm for density testing and compressive strength testing after 28 days. The test results showed that the largest slag content was silica and iron. The addition of nickel slag provided a slump value that was still included in the type of mixture with good performance. The addition of nickel slag up to 30% increased the density and compressive strength of concrete. The density of concrete increased by 6.7-21.9%. The increase in concrete compressive strength ranges from 8.43 to 33.79%. The mixture with the addition of 20% fine slag has the highest compressive strength of 33.23 MPa.

References

[1] P. Ghods, R. Alizadeh, and M. Salehi, “( 12 ) United States Patent,” 2017

[2] A. Arisha, A. Gabr, S. El-Badawy, and S. Shwally, “Performance Evaluation of Construction and Demolition Waste Materials for Pavement Construction in Egypt,” J. Mater. Civ. Eng., vol. 30, p. 4017270, Feb. 2018, doi: 10.1061/(ASCE)MT.1943-5533.0002127.

[3] I. M. Asi, H. Y. Qasrawi, and F. I. Shalabi, “Use of steel slag aggregate in asphalt concrete mixes,” Can. J. Civ. Eng., vol. 34, no. 8, pp. 902–911, 2007, doi: 10.1139/L07-025.

[4] H. Wen, S. Wu, and S. Bhusal, “Performance Evaluation of Asphalt Mixes Containing Steel Slag Aggregate as a Measure to Resist Studded Tire Wear,” J. Mater. Civ. Eng., vol. 28, no. 5, 2016, doi: 10.1061/(asce)mt.1943-5533.0001475.

[5] N. Katsiotis, P. Tsakiridis, D. Velissariou, M. Katsiotis, S. Alhassan, and M. Beazi, “Utilization of Ferronickel Slag as Additive in Portland Cement: A Hydration Leaching Study,” Waste and Biomass Valorization, vol. 6, no. 2, pp. 177–189, Jan. 2015, doi: 10.1007/s12649-015-9346-7.

[6] Y. Sakoi, M. Aba, Y. Tsukinaga, and S. Nagataki, “Properties of concrete used in ferronickel slag aggregate,” Sustain. Constr. Mater. Technol., pp. 1–6, 2013.

[7] D.-H. Shen, C.-M. Wu, and J.-C. Du, “Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture,” Constr. Build. Mater., vol. 23, no. 1, pp. 453–461, 2009, doi: https://doi.org/10.1016/j.conbuildmat.2007.11.001.

[8] . Kementrian Energi dan Sumber Daya Mineral, “Peluang Investasi Nikel Indonesia,” 2019.

[9] W. Mustika, I. M. A. K. Salain, and I. K. Sudarsana, “Penggunaan Terak Nikel Sebagai Agregat Dalam Campuran Beton,” J. Spektran, vol. 4, no. 2, pp. 36–45, 2016, doi: 10.24843/spektran.2016.v04.i02.p05.

[10] D. Sukhomlinov, O. Virtanen, P. Latostenmaa, A. Jokilaakso, and P. Taskinen, “Impact of MgO and K2O on Slag-Nickel Matte Equilibria,” J. Phase Equilibria Diffus., vol. 40, no. 6, pp. 768–778, 2019, doi: 10.1007/s11669-019-00767-3.

[11] P. Prem, M. Verma, and A. Ps, “Sustainable cleaner production of concrete with high volume copper slag,” J. Clean. Prod., vol. 193, pp. 45–48, May 2018, doi: 10.1016/j.jclepro.2018.04.245.

[12] A. Saha and P. Sarker, “Sustainable use of ferronickel slag fine aggregate and fly ash in structural concrete: Mechanical properties and leaching study,” J. Clean. Prod., vol. 162, Jun. 2017, doi: 10.1016/j.jclepro.2017.06.035.

[13] A. Arulrajah, P. Jegatheesan, A. T, and M. Bo, “Geotechnical Properties of Recycled Crushed Brick in Pavement Applications,” J. Mater. Civ. Eng., vol. 23, pp. 1444–1452, Oct. 2011, doi: 10.1061/(ASCE)MT.1943-5533.0000319.

[14] M. Paembonan, F. Phengkarsa, and S. R. Tonapa, “Penggunaan Blast Slag Nickel Sebagai Pengganti Agregat Kasar Pada Beton Geopolimer,” Paulus Civ. Eng. J., vol. 5, no. 1, pp. 107–114, 2023, doi: 10.52722/pcej.v5i1.597.

[15] M. S. Mauludi, “Pemanfaatan Copper Slag Sebagai Substitusi Pasir Pada Campuran Beton Mutu K 225,” J. Tek. Sipil dan Lingkung., vol. 2, no. 1, pp. 188–195, 2014.

[16] N. K. Handayani and N. A. Trisnawan, “Pemanfaatan Steel Slag sebagai Substitusi Agregat Kasar pada Pembuatan Beton HVFA-SCC Tahan Serangan Sulfat,” Din. Tek. Sipil Maj. Ilm. Tek. Sipil, vol. 16, no. 2, pp. 79–87, 2023, doi: 10.23917/dts.v16i2.23273.

[17] H. Kaselle and R. B. Allo, “Pengaruh Penggunaan Slag Nikel Pada Kuat Tekan dan Kuat Lentur Beton Geopolimer,” J. Appl. Civ. Environ. Eng., vol. 1, no. 2, p. 67, 2021, doi: 10.31963/jacee.v1i2.2999.

[18] J. Sun, J. Feng, and Z. Chen, “Effect of ferronickel slag as fine aggregate on properties of concrete,” Constr. Build. Mater., vol. 206, pp. 201–209, 2019, doi: 10.1016/j.conbuildmat.2019.01.187.

[19] M. L. Fadillah and M. Olivia, “Densitas, Nilai Slump, Dan Kuat Tekan Beton OPC Dan OPC POFA Dengan Campuran Air Gambut Terpapar Di Lingkungan Gambut,” Jom FTEKNIK, vol. 4, no. 2, p. 1, 2017.

[20] Y. Andika, S. Buyung, J. E. Ola, and S. P. Sorong, “Pengaruh Bentuk Benda Uji Terhadap Kuat Tekan Beton Pada Material Lokal,” vol. 10, no. 1, pp. 32–35, 2024.

[21] A. M. Neville and J. J. Brooks, Concrete Technology, 2nd ed. London: Pearson Education Ltd., 2010.

[22] H. Dermawan, M. Olivia, and Z. Djauhari, “Sifat Fisik dan Mekanis Beton Sekat Kanal High Volume Fly Ash (HVFA) di Lingkungan Gambut,” J. Tek., vol. 16, no. 1, pp. 23–31, 2022, doi: 10.31849/teknik.v16i1.9051.

[23] D. E. Wahyuni, R. Sriyani, and A. Kadir, “Perbandingan Komposisi Slag Nikel Pomalaa dan Batu Pecah Moramo untuk Menentukan Kuat Tekan Optimum Beton,” J. STABILITA, vol. 6, no. 3, pp. 43–48, 2018.

[24] I. I. Baharuddin, A. M. Imran, A. Maulana, and A. Hamzah, “Karakterisasi Fisik dan Kimia Slag Feronikel Kecamatan Pomalaa Sulawesi Tenggara,” J. Ilmu Alam dan Lingkung., vol. 12, no. 1, pp. 7–16, 2021.

[25] A. N. Majalis, N. V. Permatasari, Y. Novitasari, N. Wicaksono, D. Armin, and R. Pratiwi, “Kajian Awal Produksi Fero Sulfat dari Slag Nikel Melalui Proses Pelindian Menggunakan Asam Sulfat,” J. Ilmu Lingkung., vol. 18, no. 1, pp. 31–38, 2020, doi: 10.14710/jil.18.1.31-38.

[26] F. M. Van Gobel, “Nilai Kuat Tekan Beton Pada Slump Beton Tertentu,” Jurmal Perad. Sains, Rekayasa, dan Teknol., vol. 5, no. 1, pp. 22–33, 2017.

[27] M. Humaidi and M. Hafizh, “Pengaruh Nilai Slump Terhadap Kuat Tekan,” Ятыатат, vol. 10, no. 2, pp. 19–29, 2006.

[28] J. K. Prusty and S. K. Patro, “Properties of fresh and hardened concrete using agro-waste as partial replacement of coarse aggregate - A review,” Constr. Build. Mater., vol. 82, pp. 101–113, 2015, doi: 10.1016/j.conbuildmat.2015.02.063.

[29] A. Mardani-Aghabaglou, S. H. Bayqra, and A. Nobakhtjoo, “Specimen size and shape effects on strength of concrete in the absence and presence of steel fibers,” Rev. la Constr., vol. 20, no. 1, pp. 128–144, 2021, doi: 10.7764/RDLC.20.1.128.

[30] I. G. M. Oka, “Optimalisasi Pemanfaatan Limbah Baja Sebagai Beton Berat (High Density Concrete),” Maj. Ilm. Mektek, vol. 9, no. 1, pp. 28–33, 2007.

[31] R. S. Edwin, W. O. Sartini, and F. Masud, “Kinerja Beton Mutu Tinggi Kandungan Slag Nikel Terhadap Kuat Tekan Dan Workability,” STABILITA || J. Ilm. Tek. Sipil, vol. 11, no. 3, p. 178, 2023, doi: 10.55679/jts.v11i3.41202.

Downloads

Published

2024-09-30

Issue

Section

Articles