Fundamental Physics Practicum e-module to determine the value of the Earth's gravitational acceleration based on recorded experiments

Natalia Erna Setyaningsih
Physics Education, Universitas Negeri Semarang, Indonesia
Email: nataliaerna@mail.unnes.ac.id

Agus Nu’man
Physics Education, Universitas Negeri Semarang, Indonesia
Email: unnesagus@mail.unnes.ac.id

Fifin Dewi Ratnasari
Physics Education, Universitas Negeri Semarang, Indonesia
Email: fifin_fisika@mail.unnes.ac.id

Danang Subarkah Hadi Kawuryan
Chemical Engineering, Universitas Negeri Semarang, Indonesia
Email: danangsh@mail.unnes.ac.id

Abstrak. The research aims to improve the effectiveness of fundamental physics practicum to determine the value of the Earth's gravitational acceleration, whether carried out online or offline. This type of research is development research. The research was conducted using the 4D method: define, design, development, and disseminate. The product developed as a module contains a guidebook into an electronic module by integrating a practicum video (recorded experiment) that contains how to use the tools and practicum work steps. Data collection techniques are carried out by interviews and questionnaires. Questionnaires are given to a material, language and media experts to find out the validity of the e-module. Questionnaires are also given to lecturers who teach fundamental physics courses and students participating in introductory physics courses to find out the feasibility of e-modules. From the study, the average score of material, language and media experts was 89.08%, stating that the e-module was very valid. At the same time, the average score for the feasibility test is 89.38% which states that the e-module is very feasible. Thus, the development of a fundamental physics practicum e-module can increase the effectiveness of the fundamental physics practicum in determining the value of the Earth's gravitational acceleration.

Keywords: The electronic module, Earth's gravitational acceleration, recorded the experiment

I. Introduction

The COVID-19 (Coronavirus Disease-19) pandemic is still ongoing. The impact of this pandemic is being felt by the community, one of which is in education. Educational activities in tertiary institutions have changed by using the hybrid learning method, namely the combination of face-to-face learning methods and computer-based learning [1]. At Semarang State University, the Hybrid Learning method has also been implemented. However, applying to practicum courses in laboratories that require the availability of practicum tools and materials will be difficult.

A laboratory is an academic support unit in an educational institution, in the form of a closed or open room, permanent or mobile in nature, managed systematically for testing, calibration and or production activities on a limited scale, using equipment and materials based on specific scientific methods in the context of implementing education, research, and community service [2].

While practicum is an activity that aims to help students to understand theory and practice [3], interpreting data (2) developing the ability to solve problems with a scientific approach so that students gain the ability to identify real problems that are felt, formulate operationally, design the best way to solve problems and
implement them in the laboratory as well as analyze and evaluate the results (3) increase understanding and expansion of knowledge (facts, concepts, principles, theories) students [4].

The Fundamental Physics Practicum is one of the compulsory subjects in the Physics Department of FMIPA UNNES, intended for Physics students in semesters 1 and 2. The objectives of the Fundamental Physics practicum are (1) to acquire skills and skills in using and understanding the use of laboratory equipment, (2) to appreciate better the material taught given in lectures and understand the relationship between theory and observation (3) able to analyze, make hypotheses or conclusions from data obtained from experimental results (4) able to communicate orally and in writing regarding research methodology [5]. One of the Fundamental Physics practicum materials is determining the value of the acceleration due to gravity. The type of practicum used to determine the value of the acceleration due to gravity is a mathematical pendulum swing [6]. The physical pendulum oscillation experiment is also a type of Fundamental Physics practicum which aims to determine the value of the acceleration due to gravity [7]. In addition to these two types of practicum, the Atwood plane is also a practicum material that aims to determine the value of the acceleration due to gravity [8].

The implementation of the Fundamental Physics practicum requires a practicum module. So far, the Fundamental Physics practicum module still uses printed books distributed to students. The weakness of modules is that they need more flexibility in providing practical instructions for students. The Fundamental Physics practicum activities during the pandemic have been adapted to home-based experiments and virtual experiment modules. Home-based experiment-based practicum requires students to be able to make their practicum tools and materials used, and this raises problems where not all tools and materials are easily found in the market. While practicum is based on virtual experiments, using physics experiment software, students can obtain relatively more accurate data following the theory being taught. However, the weakness is that students need to learn the tools and materials used for practicum and how the tools work and function. Thus, the right solution is needed in carrying out Fundamental Physics practicums online and offline.

As with the previous research, developing digital modules for fundamental physics practicum on electricity magnets has met the validity and feasibility criteria with a validity value of 89% and a feasibility value of 86% [9]. Because the Fundamental Physics practicum material is not only Magnet Electricity, it needs to be developed for other materials, including determining the value of the acceleration of Earth's gravity.

According to research by Erniwati et al. [10], there are differences in student learning outcomes in the control and experimental classes. The control class is a class with the application of learning methods, as is usually done. In contrast, the experimental class is a class that applies video-based practicum media in the learning process. In the normalized gain test, the average student learning outcome in the experimental class was 0.4, while in the control class, it was 0.24. because video-based practicum media can increase students' understanding of learning material, they can observe learning material using practicum videos to provide a clearer picture.

The research of A.Y. Utomo [11] states that the results of learning development using video tutorials based on validation from media experts get an average assessment percentage of 89%. In contrast, from material experts, the average percentage is 86%, to increase student learning outcomes classically by 31%.

Thus, the right solution in conducting Fundamental Physics practicums, whether done boldly or enticingly, is to do experimental-based or video-based Fundamental Physics practicums that utilize computer technology in learning through practicum activities [12]. By viewing the video shown, students can get an overview of the tools and practicum materials used and find out how these tools function and work [13].

The series of Fundamental Physics practicums to determine the value of the acceleration due to gravity will be packaged in a video or recorded experiment. Video is a live image on a screen capable of presenting information and explaining complex concepts that cannot even be captured by the human senses when viewed directly or with the naked eye [14]. These videos will be integrated into electronic modules (e-modules). E-modules can be operated via smartphones, PCs, tablets or laptops, so they can be opened anytime and anywhere. The advantages of e-modules include displaying text, animation, images and videos [15]. So the purpose of this research is to increase the effectiveness of fundamental physics practicum to determine the value of the acceleration of gravity of the Earth whether done online or offline.

II. Method

This research uses the type of R&D research (Research and Development) with a 4D development model, Define, Design, Development and Disseminate [16]. The description is as follows (1) Define the researcher

Jurnal Riset dan Kajian Pendidikan Fisika, 2022; 9(2) 62
and describe the background and analysis of objectives to find out how much it is necessary to use a product to overcome existing problems. Then the researchers analyzed the needs needed in making a practicum video as a basis for making the Fundamental Physics practicum e-module to determine the value of the Earth's gravitational acceleration. (2) Design, namely preparing the material to be displayed in the product, compiling the video concept to determine the value of the acceleration of gravity of the Earth, then taking video pictures according to the scenario, editing and mixing to combine the video pieces into all components of the learning media (prototype). (3) Development, namely the development of the Fundamental Physics practicum module data with the material for determining the value of the acceleration of gravity being converted into a portable document format (PDF) file, integrating practicum videos or recorded experiments into the module so that it becomes an e-module and then conducts a validity test material, language and media experts as well as due diligence. The practicum video for determining the value of the Earth's gravitational acceleration consists of 3 practicum titles: mathematical swing, physical swing and Atwood machine. (4) Disseminate, which is the distribution of the Fundamental Physics practicum e-module to determine the value of the acceleration of gravity based on recorded experiments to students in semester 1 of the 2022-2023 academic year who are taking the Fundamental Physics 1 practicum course [17].

Researchers collected data using interviews and questionnaires [18]. The purpose of the interviews was to gather information from students taking the Fundamental Physics practicum course regarding the modules used so far. At the same time, the questionnaire contains written questions addressed to material experts, language experts, media experts and students using the Fundamental Physics practicum e-module to determine the value of the acceleration of gravity.

The data analysis technique used in this research is percentage descriptive statistical data analysis [19] with the formula \(P = \frac{f}{N} \times 100\% \) where \(P \) is the rater's percentage, \(f \) is the frequency (total score obtained), and \(N \) is the number of cases (maximum total score). This data analysis technique tests the validity of material, language, media and due diligence [20].

III. Results and Discussion

Based on the results of the researcher's interview with students who have taken the fundamental physics practicum course in determining the value of the acceleration of gravity of the Earth which is carried out offline, it is known that students do not understand and have not yet obtained an overview of the methods or work steps of carrying out practicum activities, because they only read the sentences in the practicum module. Whereas during the practicum period, which was carried out online, students increasingly did not understand the practicum work steps and the functions of the practicum equipment because they did not see and carry out practicum activities directly.

The e-module is a development of the practicum module by integrating videos into the e-module (Figure 1, 2, 3). Researchers made three videos uploaded on the official UNNES physics youtube channel. The video integration process is done by inserting a practicum video link for each title uploaded on YouTube. The following is a practicum video image that has been integrated into the Fundamental Physics practicum e-module to determine the value of the acceleration of gravity of the Earth:

![Figure 1. Mathematical pendulum practicum video](image1.png)

![Figure 2. Video of physical pendulum practicum](image2.png)
The e-module that has been developed consists of 17 pages covering the cover of the e-module, preface, table of contents, practicum material and bibliography. The practicum materials in the e-module are mathematical pendulum, physical pendulum and Atwood machines. Each material consists of objectives, tools and materials, theory, and methods which contain video integration, observation tables, and preliminary and final assignments. The e-module cover can be seen in Figure 4 below:

The E-module is validated by competent material experts, linguists and media experts. The e-module validation and eligibility criteria [15] can be seen in table 1 below:

<table>
<thead>
<tr>
<th>Score percentage intervals</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>25% ≤ P ≤ 44%</td>
<td>Invalid / Not Feasible</td>
</tr>
<tr>
<td>45% ≤ P ≤ 63%</td>
<td>Valid Enough / Decent Enough</td>
</tr>
<tr>
<td>64% ≤ P ≤ 81%</td>
<td>Valid / Feasible</td>
</tr>
<tr>
<td>82% ≤ P ≤ 100%</td>
<td>Very Valid / Very Feasible</td>
</tr>
</tbody>
</table>
The results of e-module validation by material experts are shown in table 2 below:

<table>
<thead>
<tr>
<th>No</th>
<th>Assessment Aspects</th>
<th>Total score</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Aspects of material coverage</td>
<td>15</td>
<td>94</td>
</tr>
<tr>
<td>2.</td>
<td>Aspects of material accuracy</td>
<td>14</td>
<td>88</td>
</tr>
<tr>
<td>3.</td>
<td>Aspects of material up-to-date</td>
<td>15</td>
<td>94</td>
</tr>
<tr>
<td>4.</td>
<td>The aspect of delving into the curiosity of users</td>
<td>14</td>
<td>88</td>
</tr>
</tbody>
</table>

Mean 91

Each aspect of the material assessment found that the average percentage score was 91%, which stated that the e-module was very valid.

The results of e-module validation by linguists are shown in table 3 below:

<table>
<thead>
<tr>
<th>No</th>
<th>Assessment Aspects</th>
<th>Total Score</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Aspects of language suitability with student development</td>
<td>15</td>
<td>94</td>
</tr>
<tr>
<td>2.</td>
<td>Aspects of communicative language use</td>
<td>14</td>
<td>88</td>
</tr>
<tr>
<td>3.</td>
<td>Aspect of using precise language</td>
<td>14</td>
<td>88</td>
</tr>
<tr>
<td>4.</td>
<td>Aspects of conformity with the rules of the Indonesian language</td>
<td>13</td>
<td>81</td>
</tr>
</tbody>
</table>

Mean 87

The aspects stated in the language assessment in table 3 shows an average percentage score of 87%, which states that the e-module is very valid.

The results by media experts can also be seen in table 4 below:

<table>
<thead>
<tr>
<th>No</th>
<th>Assessment Aspect</th>
<th>Total Score</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Aspects of presentation techniques</td>
<td>14</td>
<td>88</td>
</tr>
<tr>
<td>2.</td>
<td>Aspects of completeness supporting the presentation material</td>
<td>15</td>
<td>94</td>
</tr>
<tr>
<td>3.</td>
<td>Graphic aspect</td>
<td>13</td>
<td>81</td>
</tr>
<tr>
<td>4.</td>
<td>Media aspect</td>
<td>15</td>
<td>94</td>
</tr>
</tbody>
</table>

Mean 89.25

Validation on the media assessment aspect shows an average score of 89.25%, which states that the e-module is very valid.

The evaluation aspect of e-module validation by material experts, linguists and media experts stated that the Fundamental Physics practicum e-module to determine the value of the acceleration of gravity of the Earth is very valid. The next step is to conduct e-module feasibility tests. The e-module due diligence questionnaire was given to 40 students, and different results for each aspect were obtained. The following results of the e-module due diligence assessment can be seen in table 5.

<table>
<thead>
<tr>
<th>No</th>
<th>Assessment Aspect</th>
<th>Total Score</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Keserasian audio visual</td>
<td>143</td>
<td>89.38</td>
</tr>
<tr>
<td>2.</td>
<td>Desain gambar dan video</td>
<td>148</td>
<td>92.50</td>
</tr>
<tr>
<td>3.</td>
<td>Kelayakan isi</td>
<td>139</td>
<td>86.88</td>
</tr>
<tr>
<td>4.</td>
<td>Penyajian materi</td>
<td>142</td>
<td>88.75</td>
</tr>
</tbody>
</table>

Mean 89.38

These data show that the average score for each aspect of the due diligence is 89.38%. This states that the Fundamental Physics practicum e-module to determine the value of the acceleration of gravity of the Earth is very feasible to use. The research by A.Y. Utomo [11] states that video tutorial learning media can improve student learning outcomes.
IV. Conclusion

Based on data analysis and discussion of the development of the fundamental physics practicum e-module to determine the value of the Earth's gravitational acceleration based on recorded experiments, it can be concluded that the e-module can increase the effectiveness of the Fundamental physics practicum to determine the value of the Earth's gravitational acceleration whether done online or offline. The e-module has an average validity of the material, language, and media validation tests of 89.08%. In contrast, the feasibility test of the e-module is 89.38%. This research was only conducted at the level of students in tertiary institutions. In future research, a similar product could be developed for students in high schools.

References
